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I. INTRODUCTION 

Conventional qualitative spectrographlc analyses are 

normally performed by vaporizing the sample from a carbon 

supporting electrode and exciting the spectra of the con­

stituents by the same electrical discharge• Since the analyst 

is usually Interested in recording as much Information as pos­

sible, the dispersed spectra are usually photographed. The 

spectrograms obtained in this manner provide definitive infor­

mation on the presence or absence of approximately 70 elements 

in the periodic system. It is of Interest to note that most 

of these 70 elements have sensitive lines requiring less than 

6 eV for excitation and that all of the sensitive lines of 

these elements are located in the visible wavelength region. 

The greatest deficiency of this analytical technique is that 

analytical information cannot normally be obtained for the 

following elements; oxygen, nitrogen, hydrogen, carbon, 

fluorine, chlorine, bromine, iodine, sulfur, and selenium. It 

is, of course, readily apparent why oxygen, nitrogen, carbon, 

and hydrogen bypass detection in the sample. These elements 

are major constituents of the gases (carbon vapor, constitu­

ents of normal air) which support the arc discharge. Even if 

they were not present as major constituents of the arc plasma, 

these elements together with fluorine, chlorine, bromine, 

iodine, sulfur, and selenium present another two-fold problem. 

First, Table 1 shows that the lowest excited states in the 
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respective atomic energy level diagrams of these elements 

range from 6.3 up to 13 eV above the ground state. As a con­

sequence, the sensitive resonance lines of these elements lie 

in the vacuum ultraviolet spectral region. 

Table 1. Resonance lines 

Resonance lines 

Element Wavelength (^) Excitation 
potential (eV) 

F 954.8 13.0 
Cl 1347.2 9.2 
Br 1488.4 8.3 
I 1830.4 6.S 
S 1807.3 6.8 
Se 1960,9 6.3 
H 1215.7 10.2 
N 1200.7 10.3 
0 1302.2 9.5 
G 1657.0 7.5 

The second problem posed by these elements is that all 

the other line-producing transitions originate so high in the 

energy level scheme that the lines are weak in intensity. The 

atomic energy level diagrams of fluorine and iodine, shown in 

Figure 1, illustrate this problem very well. Transfer of over 

8 eV during inelastic collisions would be required to cause 

emission of any of the non-resonance lines of these elements. 

For iodine, approximately 8,3 eV would be required to cause 

emission of lines in the conventional photographic region of 

the spectrum while for fluorine, 14.4 eV is necessary. 
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Figure 1. Simplified atomic energy level diagrams. Wavelengths expressed 
in K 
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An examination of the energy distribution In a d.c. 

carbon arc plasma reveals why it Is so difficult to populate 

excited states which are located so far above the ground state, 

There is general agreement (15.87,93) that local thermodynamic 

equilibrium (LTE) prevails In d.c. arc discharges at atmos­

pheric pressure. When LTE exists, it is then possible to 

describe locally the distribution of energies of the particles 

in the discharge column by the Maxwell-Bcltzmann distribution 

law (110). 

nkT 

3/2 
exp(-E/kT) dE 

where ̂  - fraction of particles possessing an energy 
between E and E + dE 

E - kinetic energy 

T - temperature (°K) 

k - Boltzmann constant. 

This equilibrium energy distribution Is dependent only on the 

absolute temperature and therefore any volume of particles in 

a discharge column that are In LTE can be described by some 

temperature. If, for example, an average temperature of a 

d.c. carbon arc is assumed to be approximately 8000°K (100), 

the energy distribution shown In Figure 2 exists. The corres­

ponding average energy of the particles at this temperature 

(3/2 kT) is only about 1 eV. Thus, only collisions with the 

very small number of particles in the high energy "tail" of 
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Figure 2. Maxwell-Boltzmann energy distribution curve for T = 8000°% 
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the Maxwell-Boltzmann distribution curve play an Important 

role In populating the higher energy states In elements such 

as chlorine. 
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II. PURPOSE OF RESEARCH 

The goal of this research was the establishment of a 

practical qualitative spectrographlc analysis scheme which 

would Include the detection of as many elements in the peri­

odic table as possible. In addition to the elements generally 

Included in\ such qualitative schemes, the object of this 

research was to Incorporate the halogens, sulfur» selenium, 

and. If possible, oxygen, nitrogen, hydrogen, and carbon into 

a general and practical qualitative analysis scheme. To be 

useful and practical such a scheme must meet certain overall 

requirements. The procedure should provide acceptable detec­

tion limits for the halogens, sulfur, selenium, oxygen, nitro­

gen, carbon, and hydrogen, as well as for the remainder of the 

elements In the periodic system. The scheme should not re­

quire the use of special excitation sources, i.e.,commonly 

available commercial excitation sources should be adaptable. 

The excitation scheme should not be unnecessarily elaborate; 

preferably, in each wavelength region a single exposure should 

suffice for the detection of all the elements. Conventional 

spectrographs and photographic emulsions or films should be 

adequate for the recording of the spectra. The excitation 

scheme employed should be directly applicable to solid samples 

that are electrically conducting or nonconducting. Prior dis­

solution of the sample should not be required. 

In achieving the above goals and requirements, it was 
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convenient to divide the total problem Into two major parts. 

First, an acceptably sensitive technique would be developed 

for the excitation of the emission spectra of the halogens, 

sulfur, selenium, and If possible, oxygen, nitrogen, hydrogen, 

and carbon. Second, the effectiveness of the technique de­

vised for the excitation of the "dlfflcult-to-detect" elements 

would be evaluated for the qualitative detection of other 

elements in the periodic system. 
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III. HISTORICAL 

Characteristic spectra useful for qualitative detection 

of the elements oxygen, nitrogen, carbon, hydrogen, chlorine, 

bromine, iodine, fluorine, sulfur, and selenium have been 

observed under a variety of experimental conditions. The 

question then arises whether the excitation and observational 

schemes employed can be incorporated into an experimental sys­

tem which may be useful for performing practical qualitative 

analyses. To answer this question, a rather comprehensive 

compilation of prior reports on the analytical observations 

of the halogens and sulfur, as representative elements, was 

undertaken. 

A. Characteristic Band Emission Spectra 

In the hot environment of conventional flames and d,c. or 

a.c. arc discharges, it is possible to form diatomic molecular 

emitters of the halogens. The most useful of these emitters 

are the alkaline earth halides in arc discharges and in flames 

(5,19,33,42,47,49,62,88,101,103,109) and copper chloride in 

flames (44). The latter forms the basis of the well known 

Beilstein chloride flame test. Among the band systems which 

have been employed for the qualitative detection or quantita­

tive determinations of the nalogens, the bandheads of calcium 
o 

fluoride at 5291 and 6o64 A, (5,14,33.47,49.88,101.103,109), 

strontiurr fluoride at 5772 t. (19), and calcium chloride at 
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o 
6211 and 593^^ A (5,4?) have been found most useful. Only weak 

emission of doubtful analytical utility has been observed from 

the respective bromide and Iodide molecules (5,4?). An excess 

of calcium atoms must be present In the flame or arc plasmas 

for the efficient formation of the diatomic molecules. This 

requirement detracts considerably from the qualitative analy­

sis utility of these spectra, because the addition of calcium 

precludes the Identification of this element In the original 

sample. 

B. Characteristic Line Emission Spectra 

1. D.c. arc discharges 

Line spectra of the halogens have also been excited with 

a d.c. arc discharge, Relnold and Schroll (92) excited a low-

energy atomic Iodine line (7 eV) with a d,c. arc discharge In 

air. Using this 2062 A line, these Investigators detected 

0,002% Iodine In the complete absence of alkali salts. 

By replacing air with a noble gas supporting atmosphere, 

other workers were able to photograph the characteristic high-

energy lines of the halogens found In the visible region. 

Vllnat e^ al. (114,11$,116) devised a "blowing" electrode and 

a "double Injector" system, both of which enabled the arc 

discharge to be maintained In a helium atmosphere without the 

utilization of an enclosed chamber. With this arrangement, 

they were able to obtain spectra of the high-energy atom and 
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ion lines of the halogens, sulfur, and selenium when these 

elements were present as major constituents. 

After dilute solutions containing the halogens and sulfur 

were evaporated into a graphite electrode, Tveekrem (113) 

found that these elements were efficiently excited in a d.c. 

arc only when the sample electrode was the cathode and the 

supporting atmosphere was helium or neon. The optimum line 

intensities of the halogens and sulfur were obtained at a 

pressure of 200 Torr, It is logical that the most efficient 

excitation should occur at the cathode because the cathode 

fall region of a d,c, arc is characterized by energies com­

parable to the ionization potential of the supporting atmos­

phere (^3). Thus for the noble gases, krypton, argon, neon, 

and helium, energies of approximately 14 to 24,5 eV would be 

found in the cathode fall region. In other probing experi­

ments in which a sample consisting of 1.5% of each of the 

halogens and sulfur in a magnesium oxide matrix was arced in 

a helium supporting atmosphere, Tveekrem was unable to detect 

any lines of the halogens and sulfur. 

The successful detection of the halogens and sulfur in 

d.c. arc discharges supported by the noble gases can be readily 

interpreted. The excitation in a d.c. arc is accomplished pre­

dominantly by inelastic collisions of electrons with atoms and 

molecules. The number of available high energy electrons in 

an electrical discharge of this type is influenced by the 
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supporting atmosphere. In an atmosphere containing a large 

number of molecular species, the electrons have a high prob­

ability for inelastic collisions with these molecules when the 

electronic energy exceeds the energy necessary for the excita­

tion, dissociation, or ionization of the molecular species. 

Likewise, in atmospheres composed of atomic species there is 

a large probability for inelastic collisions between electrons 

and atoms when the electronic energy surpasses the amount of 

energy needed for the excitation or ionization of the atoms. 

The electrons will lose a large portion of their kinetic 

energy in these inelastic collisions and therefore the excita­

tion characteristics of the supporting atmosphere will tend to 

limit the maximum energy available in the discharge for the 

excitation of the analyte elements. For example. In an air 

atmosphere the maximum energy available for excitation is 

primarily limited by the dissociation energies of oxygen and 

nitrogen, namely $ and 7 eV, respectively. This means that 

there will be very few electrons which have energies In excess 

of about 7 eV in an air atmosphere. 

The maximum energies available in arc discharges sup­

ported by monoatomic noble gases are determined by the excita­

tion and ionization potential of the particular gas. Of these 

two processes, ionization is more important than excitation 

(41). Thus in an argon supporting atmosphere, not many elec­

trons would be expected to have energies in excess of 16 eV 
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because the lowest excitation energy of argon atoms is 11,6 eV 

and the ionization potential is I5.8 eV. The lowest excita­

tion potential and the ionization potential of helium are 

considerably higher, 19.8 and 24.6 eV, respectively, and 

therefore an electrical discharge in a helium atmosphere would 

be expected to produce excitation of much higher energy levels. 

Of the previous investigators, Vilnat et al. were able to 

obtain spectra of the halogens when these elements were present 

as the major constituents in samples. Tveekrem detected lines 

of the halogens only when his sample consisted of dilute solu­

tions of the halogens which were evaporated on a graphite 

electrode. It is evident that both of these methods are 

impractical for a general qualitative analysis procedure. The 

results of the preceding investigators have indicated that the 

extension of the d.c. arc method to the analysis of trace 

amounts of the halogens in some matrix has thus far not been 

found feasible. 

2. Conventional high-voltage condensor discharges 

a. Solid samples With a spark discharge in air, back­

ground radiation limits the analytical usefulness of several 

wavelength regions. Nevertheless, Johnson and Norman (50) 

have detected 0,1% fluorine and 0,07% iodine in finely divided 

samples held in a cored graphite electrode. To accomplish 

this, they utilized a conventional spark source in an air 

supporting atmosphere. However, they had to pass carbon 
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dioxide through the discharge column during the analysis for 

chlorine and bromine in order to eliminate interferences from 

air lines. Several other authors have avoided the limitations 

Imposed by an air supporting atmosphere and simultaneously 

increased the available energy for excitation by utilizing 

gases other than air (usually the noble gases) for the sup­

porting atmosphere, 

Mansfield, Fuhrmeister, and Fry (70) reported an Increase 

in line Intensity of the halogens and sulfur and a decrease In 

the Intensity of the background radiation when they changed 

the supporting atmosphere from air to helium. However, when 

Gunn (35) replaced air in the discharge column with a stream 

of helium, he found a reduction in the intensity of chlorine 

and sulfur lines and the background, Gunn indicated that the 

difference between his and Mansfield's results was probably 

due to different excitation conditions. Both Gunn and Mans­

field et al. sparked their samples in a fabricated silver 

pellet opposite a silver counterelectrode. Hurd (46) also 

found that the background intensity decreased when helium was 

passed across the analytical gap. In addition, Hurd noted an 

Increase In background when an air atmosphere was replaced by 

argon. Using a helium atmosphere, Hurd detected 0.5^ sulfur 

in a sample mixed with graphite and formed Into a conducting 

rotating disc. 

Whereas Johnson and Norman, Mansfield, and Gunn simply 
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enveloped the spark plasma with noble gases, Harvey and 

Melllchamp (39) utilized an atmospheric control system for 

their excitation chamber. With this arrangement Harvey and 

Melllchamp also were able to observe spectra emitted in spark 

discharges at reduced pressures. They indicated that pres­

sures between 10 and 40 Torr were the most satisfactory. When 

samples were excited in both air and argon at 20 Torr, Harvey 

and Melllchamp noted no great difference between these gases 

although the sensitivities were generally better in argon. 

Utilizing a conventional high-voltage spark source similar to 

the previous authors.'a silver sample electrode and counter-

electrode system, and an argon atmosphere at a pressure of 20 

Torr, Harvey and Melllchamp detected 0,1% carbon, 0.05# phos­

phorus, 0.07# sulfur, 0.01& chlorine, 0.1# selenium, 0.01# 

bromine, and 0.03# iodine. However, it is important to note 

that they were unable to detect 5# fluorine. One reason for 

this might be that their observations were apparently restric-
o 

ted to the 3500 to 5000 A region and the sensitive fluorine 
o 

atom line is located at 6856 A. The paper does not indicate 

what fluorine lines they were considering. 

Using a high-voltage spark superimposed on a 29 A d.c. 

arc in an argon atmosphere at 75 Torr, Contamin (20) detected 

0.005# chlorine in graphite pellets. However, with the same 

experimental conditions he was only able to see faintly 10# 

fluorine. After experimenting with different pressures in 
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argon, an argon and helium mixture, helium, and neon, Contamln 

finally detected 0,05% fluorine in a silver pellet utilizing 

different electrical conditions in a neon supporting atmos­

phere at 400 Torr, It is evident that Contaminas method is 

not very practical especially when more than one element must 

be determined In a given sample. 

Thus, several different investigators have reported con­

siderable success in detecting the halogens by employing high-

voltage spark discharges in noble gas atmospheres at reduced 

pressures. Pressure is an important variable because it in­

fluences both the vaporization and excitation of the sample 

material. In a spark discharge, sample vaporization is caused 

by positive ion bombardment of the cathode (see Chapter IV), 

The total number of ions in the discharge column increases as 

the pressure Increases, but the energy that the ions acquire 

increases with decreasing pressure because the number of 

collisions in which the ions participate decreases. Inelastic 

collisions of electrons with sample atoms are the principal 

excitation mechanism in a spark discharge. With decreasing 

pressure the electrons acquire longer mean free paths, are 

able to attain higher energies, and should be more efficient 

in populating excited states of high energy. However, there 

is no a priori reason to suppose that the most efficient 

sample vaporization will occur at the same low pressures where 

the excitation process is most probable. 
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The vaporization (sputtering) efficiency In an argon 

atmosphere is high because of the heavy mass of the argon 

Ions. As a result of the high probability for Inelastic 

collisions between electrons that possess energies equal or 

greater than 12 eV and argon atoms, the discharge should be 

maintained at low pressures In order for the electrons to 

most effectively populate high-lying energy levels. Indeed, 

Harvey and Melllchamp and Contamln most successfully detected 

the halogens when they utilized low pressures in argon atmos­

pheres. 

The excitation of the high-energy lines of the halogens 

is more probable in neon and helium than in argon because the 

energy distribution of the electrons Is shifted to higher 

energies in neon and still higher energies In helium. However, 

helium ions are light and therefore not as effective as neon 

and argon ions in vaporizing the samples. Nevertheless, In a 

helium atmosphere, the probability for the excitation of any 

vaporized sample material is high. 

Pressure and the nature of the supporting gas also exert 

an influence on the background radiation. Bremsstrahlung, 

i.e..free-free transitions, (8,23,86,102) and ion-electron 

recombination (23,102) processes have been proposed as explan­

ations for the occurrence of continuous radiation at different 

stages of a spark discharge. Because the probability for the 

preceding processes, and consequently for background continua. 
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increases with increasing ion concentration, more background 

radiation would be expected at high pressures and in support­

ing atmospheres that have low ionization potentials. Conse­

quently, the substitution of helium for air should result in 

a decrease in the intensity of the background radiation which 

indeed was observed by several investigators (35,46,70). 

In summary, it is clear that prior investigators were 

successful in achieving reasonably good detection limits for 

the halogens when conventional spark excitation was performed 

in noble gas atmospheres. However, the detection limits thus 

far attained leave much room for Improvement. 

b« Liquid samples Several authors have analyzed 

solutions ($5,56,60,91) and solution residues (28,29,111,124) 

for the halogens with conventional spark discharges. Using an 

ignited low-voltage spark between a copper rotating disc and 

•fcounterelectrode, Klbisov (55) detected 0.001# sulfur, 0.001# 

iodine, 0,01# bromine, and 0.01# chlorine In separate samples. 

However, because Klbisov used different values of self-induct-

ance for the analysis of each element the general application 

of his method would be difficult, Kudymov, Malinlna, and 

Varlamov (60) detected 0.005# chlorine, O.OO5# sulfur, 0.01# 

bromine, and 0,01# iodine by sparking aqueous solutions with 

the aid of a fulgurator and carbon electrode. The fulgurator 

had a volume of 1 cm^ and consisted of a carbon electrode 

Dosltloned in the center of a glass vessel that held the 
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sample solutions, A 0.8 mm capillary channel passed through 

the carbon electrode. A thin film of solution formed on the 

top of the carbon electrode by capillary action and was con­

tinuously replenished during the sparking. 

In another solution method, chlorine (0.00001#) in rain­

water was detected when the sample was evaporated to a tenth 

of the original volume, placed in an iron electrode, and 

sparked (124). It should be noted that the detection limits 

for these solution methods are not as attractive as they seem. 

They are based on the weight of the unknown element relative 

to the weight of the solution instead of being based on the 

weight of the unknown element relative to the weight of the 

original solid sample. For example, if a 0.5 ml aliquot of a 

1% solution, i.e., 0.005 gm of sample material present in this 

0.5 ml volume, was consumed in the course of the exposure, then 

a reported detection limit of 0.001% in solution would corres­

pond to a detection limit of 0.1#, [(0.000005 gm detected in a 

0.5 ml aliquot/0.005 gm sample)xl003, 1" the actual matrix. 

Thus if a 1% solution was used, practical detection limits with 

reference to the matrix material would be decreased by a factor 

of 100. 

Analysis for the halogens was also accomplished by the 

copper-spark method, which consists of evaporating dilute 

sample solutions on copper electrodes and then sparking the 

electrodes. Using this method, Pizalkowski et (28,29) 

found 0.05# fluorine, 0.01# chlorine, 0.001# bromine and 
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0.001# iodine in solution. Taylor and Webb (111) detected 

0.0005# selenium, 0.01% fluorine, 0.001# bromine, 0.001# 

iodine, 0.001# chlorine, and 0.001# sulfur in separate dilute 

solutions. The sample solutions analyzed contained negligible 

quantities of matrix analyte and consisted of dilute (1# or 

lower) aqueous solutions of individual alkali halide salts. 

In several cases the intensity of the impurity lines was sup­

pressed by the presence of species other than the test element 

in the sample (85,111,121). The amount of residue deposited 

on the copper electrodes was another critical factor in this 

method. Residue in excess of 1 mg formed a flaky crust which 

was easily dislodged by the force of the discharge in the 

first stages of sparkir^. 

Although good powers of detection have been observed for 

the techniques discussed above, prior dissolution of the 

sample Is required In all cases, and preliminary chemical 

separations in some. Both of these steps are impractical in 

a qualitative analysis scheme of general utility. Conse­

quently these techniques were not seriously considered in 

further evaluations. 

3. Specially designed discharges 

Specially designed light sources characterized by high 

current densities and consisting mainly of modified a.c. arc 

circuits (107,108) have been used for the detection of the 

halogens and sulfur. Sources included in this classification 
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are the low-voltage sparks (57,89,90), "Hot Arc" (63,64), and 

square wave pulse generator (117). 

Working at pressures of 2 to 20 Torr, Pfellsticker (89, 

90) obtained strong lines of the halogens and sulfur with an 

Ignited low-voltage spark source of high current density. 

Peak currents of about 780 A resulted during the discharge of 

the 400 to 2000 M-f condenser, previously charged with 220 to 

300 V. Pfellstlcker Indicated that he was able to obtain the 

spark lines of the nonmetals owing to the high current density, 

reduced pressures, and short spark durations (10"^sec) char­

acteristic of his source surrangement. 

In the "Hot Arc" source used by Levintov (63,64), the 

sample was vaporized by an arc discharge and the sample vapor 

was excited by a periodic discharge of a 6000V, liif condensor 

through the arc. The slit to the spectrograph was opened only 

during the pulse discharge. Bromine and sulfur spectra were 

observed with this arrangement, 

Huang (45) devised a source consisting of two arc cir­

cuits connected in parallel so that each could be regulated 

separately. A graphite crucible containing the sample was 

placed between two electrodes and was heated by the lower arc. 

The upper arc, adjusted so that the resulting discharge might 

vary from an arc to a spark, excited the sample. The detec­

tion limit for bromine and chlorine in copper oxide samples 

was 0.03$. 
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With a vacuum condensed spark» Balloffet et (6,7,94, 

95) detected 0.03# bromine, 0.01# selenium, 0.005$ sulfur, and 

0.005# phosphorus in the far ultraviolet spectral region. It 

should be pointed out that many experimental difficulties are 

encountered in this wavelength region. The absorption of 

radiation by atmospheric constituents below 1950 ̂  and by 

quartz at or below I850 2. necessitates the enclosure of the 

spectrograph and the source in a vacuum tight case. A good 

evacuating system, special optics, and specially prepared 

photographic plates are also necessary for work in this wave­

length region (38,98). 

A common disadvantage of the sources considered in this 

section is that they are specially designed and therefore not 

commercially available. Consequently the discussion of these 

sources was included only for completeness and they have been 

omitted from further consideration. 

4. Hollow cathode discharges 

Exceptionally good detection limits for sulfur and the 

halogens have been observed by hollow cathode excitation. The 

reported detection limits were in the range of 0.01 to 0.0001# 

for fluorine, 0.01 to 0.001$ for chlorine, 0.05 to 0.005# for 

bromine, and 0.03 to 0.001% for iodine and sulfur. All types 

of samples have been analyzed. Solid samples have been 

deposited or fused inside a hollow cathode (26,58,59) and 

powders (4,10.11,12.13,18,32,67,77,79,80) or solutions (9.81) 
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have been deposited or evaporated on the Inside surface of the 

cathode. It Is also possible to fabricate the hollow cathode 

out of a conducting sample. The ideal sample form was a thin, 

uniform film spread over the inside of the cathode. A typical 

sample weight ranged from 10 to 60 mg. Blrks (13) found that 

sample weights greater than 100 mg were undesirable because of 

the resulting distortion of the discharge and the incomplete 

sputtering of impurities. Helium at pressures of 2 to 15 Torr 

was normally selected as the carrier gas in the hollow cathode 

although argon and other gases could also be used. 

The presence of alkali or alkaline earth elements has 

been found to decrease the Intensity of the higher energy non-

metal lines, Berezln and Yanovskaya (12) found that 0.1 to 5% 

sodium gradually decreased the intensity of the iodine lines. 

Quantities of the alkali or alkaline earth elements greater 

than 0.035» resulted in the understating of the chlorine and 

fluorine concentrations in Korovln's work (58). In contrast 

Blrks (13) found that a twenty-fold excess of sodium and of 

chlorine exerted no appreciable suppression of 25 w.g of flu­

orine, 

A disadvantage of the hollow cathode discharge was the 

loading and evacuating required for each sample. However, 

Berezln (9) used a specially designed molybdenum glass tube 

in which six hollow cathodes could be loaded simultaneously. 

In summary, it is evident that the use of hollow cathode 
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discharges for the detection of the halogens and sulfur has 

been quite successful. 

5. High-frequency discharges 

Spectra of the halogens may also be obtained when samples 

are volatilized and excited In electrodeless, high-frequency 

discharge tubes, operated at low pressures (31,54,97,99,119, 

120). Because of the low thermal power of the electrodeless, 

high-frequency discharge, this source was limited to the anal­

ysis of gases or easily volatilized solid samples (78). 

Halogen detection was suppressed by a factor of ten or 

greater In samples containing nitrates or carbonates. A con­

siderable part of the available energy apparently was used In 

the excitation of band spectra of the evolved gases. The band 

spectra Increased the spectral background and masked the 

analysis lines (31). 

Because of the lack of reproducible sample vaporization, 

Keller and Smith (54) reported that quantitative analysis 

using an Internal standard was not practical with high melting 

Inorganic salts such as the alkali halldes. Reproducibility 

was difficult to achieve because of varying pressure and tem­

perature In the discharge tube. 

Because of its sample limitations, the high-frequency 

discharge method has been discussed above only for purposes 

of completeness. 
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6. Sensitive lines of the halogens 

One of the purposes of the undertaking of the rather com­

prehensive survey of the literature with respect to the spec­

troscopic detection of the halogens was the compilation of a 

list of analytical lines of these elements. This compilation 

is found in Table 2. 

7. Summary 

In summary, a detailed investigation of the literature 

for excitation sources suitable for the routine analysis of 

the nonmetals Indicated that either spark discharges in a 

noble gas atmosphere or hollow cathode discharges would offer 

the best promise for success. However, because of the neces­

sity of making a choice, the spark discharge was selected 

because the sample preparation for this method was deemed 

easier. It is now of Interest to examine the nature of the 

energetic spark discharges and get some insight as to why 

these excitation sources offer great possibilities of detect­

ing the halogens. 
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Table 2. Analytical lines of the halogens and sulfur 

Excitation 
Wavelength potential References 

d) (eV) 

Fluorine 

3503.1 II (28.5) 29,70,111 
3505.6 II (28.5) 20,29.70.111 
3847.1 II (25.0) 20,70 
6239.6 I 14.6 14.115 
6856.0 I 14.4 4,13.14,20.26,31.50.58,59,67,91,113, 

6902.5 
115 

6902.5 I 14.5 13,31.50,91 
6909.8 I 14.5 26 
7037.4 I 14.7 9,10,18,26,31 
7128.0 I 14.7 13.58.59 
7202.4 I 14.7 13 
7398.7 I 14.3 4,13 
7425.6 I 14.3 4 

Chlorine 

3191.4 III 25.4 29,55,111 
3340.4 III 25.2 29.111 
3602.1 III 25.0 35.70 
3612.8 III 24.9 35 
3622.7 III 24.8 35 
3827.6 II 21.4 115 
3851.5 II 19.1 26,55 
4794.5 II 15.9 9,10,13,14,18,31,39,50,58,60,64,70, 

90,91,113.119.124 
4810.1 II 15.9 13.14.18,31,39,45,50,64,70,90,91. 

97.119 
4819.5 II 15.9 31.39.45.50.56.64.70.91.119.124 
4904.8 II 18.2 56.91 
4917.7 II 18.2 56 
5078.2 II 18.1 56 
7414.1 I 10.6 4 
8376.0 I 10.4 20 
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Table 2. (Continued) 

Excitation 
Wavelength potential References 

d) (eV) 

Bromine 

2389.7 55 
2926.3 14.29,55,111 
3506.5 35,70 
3562.4 14.29,111 
4678.7 14.50.56 
4704.9 II 14.3 14.31,39,50,60,70,90,91,115 
4785.5 II 14.2 13,31.39,45,50,56,70.90,91,113 
4816.7 II 9.39.50.56,70.97 
5332.0 91 
7005.2 I 9.8 4 
7348.6 I 9.7 4 
7425.9 I 10.9 4 
8272.5 I 9.4 13 

Iodine 

3055.4 II 18.3 29,55,111 
3078.8 II 29 
3498.0 70 
3724.8 70 
3897.3 70 
3940.2 55 
4409.0 II 15.2 115 
4452.9 II 14.8 39 
4512.6 39.70 
4666.5 II 14.8 39 
4808.0 13 
4986,9 13 
5161.2 II 12.4 14.31.50,60,90,91 
5245.7 II 91 
5338.2 II 13.9 12,113 
5405.1/7 14.31 
5407.4 II 9.12 
5464.6 12.3 14,31,50,90,91 



www.manaraa.com

28 

Table 2, (Continued) 

Excitation . 
Wavelength potential References 

(h (eV) 

Sulfur 

2863.5 14,111 
3497.3 III 35,70,111 
3838.3 III 21.4 55 
3993.5 II 17.3 115 
4028.8 II 18.9 115 
4142.3 II 18.8 70 
4145.1 II 18.8 70 
4153.1 II 18.8 70 
4162.7 II 18.8 39,70 
4174.3 II 

16.1 
70 

5032.4 II 16.1 31,91 
5432.8 II 15.8 89,91 
5453.8 II 15.9 9,10,31,46.57,60,64,89.90,91,113 
5640.0 II 16.2 57,89,91 
6305.5 II 16.1 4 
6312.7 II 16.1 4,18 
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IV. A HIGH-VOLTAGE SPARK DISCHARGE 

A representative circuit for a typical controlled high-

voltage spark source Is found In Figure 3* The transformer 

typically has a peak voltage output of 15t000 to 40,000 V. 

The condenser (C) could be charged to these voltages during 

each half-cycle, if the breakdown of the control and analyti­

cal gaps did not occur during this charging cycle. 

The control gap is inserted into the circuit to regulate 

the voltage at which the discharge occurs. This is to ensure 

that the energy stored in the condenser (iCV^) and dissipated 

in the gap is precisely reproduced for each discharge. 

The spacing of the control gap is maintained at a separa­

tion greater than that of the analytical gap and consequently 

determines the actual voltage at which the condenser will 

discharge. The breakdown potential is not influenced in any 

manner by the analytical gap, A typical spacing for the con­

trol gap is about five mm when the spacing of the analytical 

gap is maintained at four mm or less. Because the control gap 

has a higher resistance than the analytical gap, current can­

not flow in the circuit until the breakdown of the control gap 

occurs. A high velocity stream of air, blown across the con­

trol gap, rapidly quenches each spark train and deionizes 

the gap. In this manner, conditions in the control gap are 

reproduced from half-cycle to half-cycle. The extinction of 

the discharge and removal of ions enables the control gap to 
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Figure 3. Circuit for a hlgh-voltage spark. Resistor Ri Is a current control; 
T Is a hlgh-voltage transformer; resistor R2, Inductance L, and 
capacitor C control the electrical characteristics of the spark; 

Is the analytical gap; and the control gap Is Gg 
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break down several times in a half-cycle, if desired. De-

ionlzation of the control gap Is not sufficient to produce 

precise breakdown voltages. Variable oxidation of control 

gap electrodes may also introduce erratic breakdown voltages. 

This problem is corrected by irradiating the control gap with 

ultraviolet light, thus producing a definite ion density in 

the gap before the next condenser discharge occurs. In this 

manner the condition of the gap is reproducible and a constant 

breakdown voltage is obtained for each discharge. 

Spark sources based on the auxiliary air-control gap are 

described In greaterTetail by Enns and Wolfe (24,25) and 

Fowler and Wolfe (30). Descriptions of other controlled spark 

excitation sources and modern excitation units are given by 

Jarrell (48), 

When the breakdown potential of the control gap is 

achieved, the condenser discharges through the resistance and 

inductance of the discharge circuit in addition to discharging 

through the gaps. Thus, the form of the discharge current and 

voltage pulse is influenced by the values of the resistance, 

inductance, and capacitance in the discharge circuit. 

If the amount of resistance in the discharge circuit is 

small (R^/4L^ < 1/LC), then at each breakdown of the gap the 

current flows back and forth through the discharge circuit as 

a damped oscillatory discharge. This oscillatory discharge 

has a frequency approximately equal to 1/2TT(LC) , In a typical 
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high-voltage spark, the frequency Is about 10^ cycles per 

second. The current oscillations are damped because of the 

energy dissipated in the gaps as well as in the circuit. When 

the gap resistance is neglected the current passing through 

the gap Is given by the equation, 

1 = [V(C/L)&] [exp(-Rt/2L)] [sin(l/LC)^t] 

V is the voltage to which the condenser is charged at the time 

of breakdown and t is the time after the gap breakdown. The 

peak current for low damping is approximated by the first term 

in the above equation. The second term in the equation 

expresses the damping and the third represents the oscilla­

tions. The initial peak current may be several hundred 

amperes, which rapidly drops to an average current of a few 

amperes. If more resistance is added to the circuit so that 

R^/kL^ = 1/LC, the circuit is critically damped and no more 

oscillations occur. For the case, > l/LC, the circuit 

is overdamped and arc-like (40). 

The choice of electrical parameters influences the nature 

of the resulting discharge. A more energetic spark is obtained 

when the inductance (L) in the circuit is reduced. This reduc­

tion in L causes the current to increase and the period of 

oscillations to decrease. This means that as L is reduced the 

current density will be higher for a given current because 

this current can be achieved in a shorter period of time. As 

a consequence of this shorter time period required to attain 
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the given current» the diameter of the spark channel is 

smaller because it has less time to expand (68,121). In­

creases in the breakdown potential also result in a more ener­

getic spark discharge. 

The capacitance (C) has a smaller Influence on the char­

acter of the discharge. As C is increased the period is 

lengthened and the peak current is increased. Although these 

two effects influence the current density in opposite direc­

tions, there is a small increase in current density (68,121), 

High-voltage sparks have been characterized in detail 

from the time of the breakdown of the gaps to the period of 

afterglow (8,21,23,52,68,102.106,118), Time-resolved studies 

with rotating mirror techniques have enabled the different 

stages of a spark to be analyzed. 

Although most of the current in high-frequency spark 

discharges is carried by electrons, the bombardment of the 

cathode with positive ions (sputtering) is the predominating 

mechanism of sample transport Into the analytical gap (3,52, 

106). The initial gap breakdown in each spark train forms an 

abundant supply of sputtering ions which are representative of 

the ionized constituents of the supporting atmosphere. Since 

there is little or no sample vapor in the analytical gap at 

the start of each spark train, the initial gap breakdown In 

each train makes no contribution to the excitation of the 

sample spectrum. 
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The sputtered electrode material, in the form of vapor 

clouds, is ejected from the cathode with velocities of 10 to 

10^ m/sec. The direction of the sample vapor cloud deviates 

from the direction of the spark streamer; the vapor cloud does 

not carry current for that discharge. However, the vapor 

cloud must expand into the path of the spark streamer since 

emission lines of the sample are observed during the latter 

portion of the first half-cycle of the spark discharge. For 

example, Bardocz (8) has obtained time-resolved spectra illus­

trating that at first only radiation representative of the 

spark breakdown was emitted. Succeeding spectra were caused 

by emission from the ionized constituents of the atmosphere 

(nitrogen and oxygen). Finally the spectrum of the electrode 

material was observed at the end of the first half-cycle of 

the spark discharge. This illustrates that the sample vapor 

is generated and excited during the same half-cycle of the 

discharge. 

The principal excitation processes occurring in a spark 

discharge involve single or multiple collisions between suf­

ficiently energetic electrons and atoms of the sample vapor 

(23,51,106). Excitation or ionization of a sample atom by a 

single electronic collision may be followed immediately by the 

bombardment of the excited atom or ion with other energetic 

electrons. Consequently, the atom or ion may be excited to 

still higher energy levels. From kinetic theory considéra-
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tlons and experimentally determined values of total collision 

cross-sections (73), the total number of collisions possible 

between K electrons and one sample atom can be approximated. 

The measured collision cross-sections vary considerably from 

element to element and also with electron energy. For a mean 

energy of 2.6 eV, corresponding to a temperature of 20,000®K, 

the total collisional cross-sections vary from 2,3 x 10"^^ cjn^ 

for neon to 310 x 10"^^ cm^ for cesium (73). Assuming a cur­

rent density for the spark of 10^ A/cm^, the total number of 

collisions, elastic and inelastic, occurring during the life­

time of an excited atom (10"® sec) are estimated to be about 

1 for neon, 3 for helium, 9 for thallium, 10 for argon, 16 for 

krypton, 27 for xenon, 31 for mercury, 3^ for zinc, 41 for 

cadmium, 94 for sodium, 1^3 for potassium, and 193 collisions 

for cesium. Thus even if only 50^ of these collisions are 

inelastic, additional excitation or ionization resulting from 

multiple collisions of electrons with sample atoms or ions is 

quite probable for most of the above elements. The number of 

electronic collisions is related to the electron density of 

the source and consequently Increases in discharges of high 

current density. Thus the high current densities of a spark, 

about 10^ to 10^ A/cm^ compared to 10^ A/cm^ for an arc, 

account for the spectra of ions and high-energy lines that 

are obtained with a spark discharge (68), 

The nature of the excited sample spectrum varies with 
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time during a single discharge. Time-resolved studies of the 

emitted radiation from a spark have shown that during the 

initial current pulse the Intensities of the ion lines are 

high compared to the intensities of the neutral atom lines. 

At this time the temperature in the core of the spark may be 

as high as 40,000°K (8,68) and under these conditions high 

ionization is expected. With succeeding current oscillations, 

the current decreases and the temperature drops rapidly. With 

a lower temperature there is less ionization, the intensity of 

the ion lines decreases, and the atom lines exhibit an 

increase in intensity. Near the end of the discharge train 

the temperature is sufficiently low so that the neutral atom 

lines become weak and finally disappear. 

The use of a source, such as the spark discharge, char­

acterized by high temperatures and high ionization should be 

conducive to the excitation of the high-energy halogen ion 

lines. The Intensity of the neutral atom lines, however, 

would be expected to decrease because of the large amount of 

ionization in the spark. 
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V. APPARATUS AND PROCEDURE 

A. Excitation Chamber 

A controlled atmosphere chamber (Spex Industries, Inc. 

Model No. 9700) was extensively modified for this research. 

Of the original lower electrode stage assembly, only the base­

plate (hereafter referred to as the lower electrode stage), 

gear set, and rotary shaft were kept. These last two items 

served to rotate the lower electrode stage, A total of 11 

collets, 15.7 mm long, could be accommodated in the lower 

electrode stage but only 5 collets were normally loaded at 

one time. These collets (E in Figure ^•), made from phosphor 

bronze, were designed to tightly hold the sample pellets and 

to fit snugly into the lower electrode stage, thereby ensuring 

good electrical contact. The entire lower stage was grounded, 

hence all five collets and their accompanying sample pellets 

assumed the same potential during excitation. 

The upper, rotating electrode stage was designed to 

accommodate five collets (D in Figure 4), 18,8 mm in length, 

which in turn held the sample pellets. The electrical power 

was applied to the upper electrode stage. Thus, all the elec­

trodes in the upper stage assumed the same potential. To 

prevent simultaneous sparking between the upper and lower 

pairs of electrodes in the two stages, the upper electrode 

stage (C) was inclined at 45° from the horizontal as shown 
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Figure Upper electrode stage assembly: 
design of upper electrode stage 

left-alignment; and right 
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in Figure Rotation of the upper stage (by means of knob A) 

then made it possible to bring a pair of electrodes into ver­

tical alignment while all other electrode pairs exceeded the 

critical spark breakdown distance. The analytical gap separ­

ation was adjusted by raising or lowering the entire upper 

electrode stage with nut B. 

With the previously indicated collet lengths, a simple 

inversion of the Pyrex glass separator brought the side-arm, 

with a quartz optical window, on axis with the analytical gap. 

The design of the lower electrode stage allowed the use of 

glass shields (shown in Figure 5) behind each pair of elec-

-trodes. The shields eliminated or considerably reduced the 

possibility of cross-contamination. These shields consisted 

of 1/3 sections of a cylinder cut 38 mm long from 42 mm 

diameter Pyrex tubing. 

Figure 5 illustrates the alignment of the electrodes in 

the upper and lower electrode stages. The arrangement of the 

electrodes, glass shields, and Pyrex cylinder in the excita­

tion chamber is also shown. Marinite 36 insulation was placed 

around the upper platform to prevent electrical shocks. 

B. Vacuum System 

The vacuum and gas-handling system is illustrated in 

Figure 6. Cylinders of helium (B) and argon (C) provided the 

gas for the chamber atmosphere. The pressure of the gas in 
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Figure 5. Photographs of excitation chamber 
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A EXCITATION CHAMBER 
B HELIUM TANK 
C ARGON TANK 
D,J,K HOKE TOGGLE VALVES, SERIES 450 
E WALLACE 8 TIERNAN PRECISION ANEROID 

MANOMETER; NO. FA-129 
F PHILIPS GAUGE; CVC NO. PHG-GI 
G HILLS-McCANNA 1-INCH BALL VALVE 
H NRC AIR-COOLED, OIL 

DIFFUSION PUMP; MODEL HSA-150 
I WELCH VACUUM PUMP; NO. I402B 
L JAMESBURY I-INCH BALL VALVE 

Figure 6, Vacuum system 
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the excitation chamber was measured with a pressure gauge (E) 

(Wallace and Tlernan, No. FA-129). Low pressures were meas­

ured by a Philips gauge (F). Ball valves (G) and (L) Isolated 

the diffusion pump (H) during the Initial evacuation of the 

excitation chamber by the mechanical pump (I). 

C. Spectrographlc Facilities 

A description of the Jarrell-Ash, 3,4 meter, Ebert spec­

trograph and photographic processes that were used may be 

found in Table 3. The external optical system, designed to 

provide uniform illumination over the entire length of the 

spectrograph slit, was similar to the three-lens system used 

by Feldman and Ellenburg (27). A spherical lens formed a 2:1 

image of the electrodes on an Intermediate diaphragm which had 

an aperture large enough to pass all of the light emitted 

within the analytical gap. A crossed cylindrical lens system 

positioned between the diaphragm and the slit of the spectro­

graph further modified the Image so that the aperture of the 

spectrograph was completely filled. In order to align the 

electrodes prior to sample excitation, the electrode image was 

projected onto the diaphragm by the illumination of a light 

bulb located behind the excitation chamber. 
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Table 3« Spectrographic equipment and conditions 

Spectrograph 

Type 

Grating 

Blaze 

Width 

Rulings 

Dispersion 

Wavelength coverage 

Slit width 

Jarrell-Ash Company, 3.4 m Ebert 
mounting plane grating spectro­
graph 

5000 A In first order 

15.2 cm 

600 grooves/mm 

5.1 A/mm In first order 
o 

2550 A In first order 

0.05 mm 

Development 

Mlcrophotometer 

Emulsion calibration 

4 minutes at 21®C In Eastman 
Kodak D-I9 with continuous 
agitation 

National Spectrographic Labora­
tories, "Spec Recorder" 

Iron arc; two-step sector, pre­
liminary curve method 

D. Excitation Source 

The high-voltage spark source on the National Spectro­

graphic Laboratories (NSL) "Spec Power" unit was used for 

sample excitation. The electrical parameters available with 

the high voltage spark source were as follows; fixed induct­

ance settings of 25# 50, 100, 200, 300, 6OO, and 1000 Hh; 
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fixed capacitance settings of 0.0025» 0.0037» 0.0050, 0.0062, 

0.0075, 0.0087» and 0.01 uf; and fixed resistance settings of 

1, 2, and 3 ohms, A spark power setting which provides for 

an increase of power input into the spark transformer primary 

could be varied in ten equal steps. The voltage into the pri­

mary coll of the spark transformer could be varied by rotating 

the spark primary voltage Powerstat from one to 100 percent. 

E. Sample Preparation 

All sample mixtures were prepared by thoroughly mixing 

given amounts of sample and some matrix material utilizing an 

agate or boron carbide mortar and pestle. One part sample 

mixture was then thoroughly mixed with two parts of high 

purity, pelleting graphite (Union Carbide No. L4100). 

Capped pellets, 6.4 mm in diameter, were prepared by 

placing approximately 0.06 g of the mixture of sample and 

graphite described above in a briquetting press (Applied 

Research Laboratories, No. 3502) and then adding approximately 

0.5 g of pelleting graphite. The powder was pressed into 

pellets by a total load of 6000 pounds applied for 20 seconds. 

The resulting pellets were about 8 mm long. 

P. Procedure 

The pellets were mounted so that they extended approxi­

mately 4 mm above the collets. The electrode holders and 

glass shields were then loaded in the excitation chamber. 
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The chamber was evacuated with the mechanical pump and then 

flushed several times with the desired Inert gas to reduce 

the original air content to a negligible amount. The chamber 

was then evacuated to a pressure of U x 10"^ Torr or lower as 

indicated by the Philips gauge, and refilled with the given 

gas to the desired pressure. After each sample excitation 

the chamber was evacuated with the mechanical pump, flushed, 

and recharged with the desired gas. 

The chamber was tightened with C-clamps when the pressure 

of the gas In the chamber exceeded atmospheric pressure. 
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VI. OPTIMAL EXCITATION PARAMETERS FOR THE DETECTION 

OF THE HALOGENS 

In theory and in practice, the detectabllity of the halo­

gens and sulfur is influenced by many experimental variables. 

Some of the obvious variables are the following; electrode 

parameters, namely, analytical gap, electrode material and the 

use of two sample electrodes or a counterelectrode and a 

sample electrode; supporting atmosphere and pressure; and 

electrical parameters including capacitance (C), inductance 

(L), resistance (R), spark primary voltage (SPV), and spark 

power (SP). The primary criterion for the selection of the 

optimal experimental conditions is the highest line-to-back-

ground intensity ratios, Il/Ibq» observed for the sensitive 

halogen lines as the experimental parameters were varied. The 

line-to-background intensity ratios reported later were cal­

culated as follows : 

^L ^ I(LINE + BACKGROUND) _ ^ 

^BG ^BACKGROUND 

and represent the average of duplicate or triplicate runs. 

The sample used for all tests consisted of 0.6% fluorine, 

0,25'^ chlorine, bromine, iodine, and sulfur respectively in 

a stannic oxide matrix. 
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A. Considerations of Electrode Phenomena 

1. SupBortinp; electrode material 

One of the requirements for a qualitative analysis 

scheme of general applicability Is that the vaporization 

and excitation technique should be directly applicable to 

all types of solid samples, conducting or non-conducting. 

However, for high-voltage spark excitation, the supporting 

electrodes must be good conductors. One of the generally 

successful approaches to this problem is to incorporate the 

non-conducting sample into a conducting electrode material 

and form conducting pellets from these blends. In the past, 

powdered graphite, copper, and silver have been used as 

supporting conductors. 

Tables and 5 show typical line-to-background intensity 

ratios observed during evaluative experiments of copper, 

silver, or graphite as the conducting electrode material. 

The data for these tables were obtained with the following 

parameters; 0.003? i^f, SP 10, SPV 70, two sample electrodes, 

1.5 mm analytical gap, and a helium supporting atmosphere 

at a pressure of 400 Torr for Table 4 and 7^0 Torr for Table 

5. Unless indicated otherwise, only the residual Inductance 

and resistance inherent to the source unit were used. Other 

combinations of electrical parameters gave no noticeable 

deviation from the relative results summarized in these 

tables. Thus It is clear that graphite electrode material 
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possessed a definite superiority In providing larger IlAbg* 

However, the the chlorine lines were consistently 

as good or better for silver than for graphite. No explana­

tion for this deviation can be offered. However, the absence 

of chlorine contamination was demonstrated from the spectrum 

of a silver pellet. The behavior of copper and silver 

powders during the pellet forming process was also inferior 

to graphite. There was a tendency for galling to occur 

between the metallic pellets and the die during the pellet­

ing process. Eventually this resulted in the die becoming 

inoperative. Also, during the sparking process, part of the 

top of the copper pellets usually broke off, causing large 

fluctuations in the 

Table 4, Comparison of graphite and silver 

Line (A) 
o ^ LIne Background 

Graphlte Silver 

CI II 4794.54 

I II 5161.19 

S II 4162.70 

P II 3505.61 

3.4 3.6 

3.0 1.0 

1.5 0.97 

0.33 not measurable 
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Table 5. Comparison of graphite and copper 

Line (A) lune/Isacksround 
Gra phi te Copper 

Br II 4785.50 2.6 0,75 

CI II 4810.06 2.1 0.32 

CI II 4819.46 1.4 0.39 

S II 5453.81 1.0 0.72 

I II 5464.62 0.92 0.32 

The direct excitation of metal self-electrodes in a 

helium supporting atmosphere presented some unexpected prob­

lems. For example, with steel electrodes, the discharge 

engulfed the electrodes about one second after the sparking 

started and subsequently spread to the collets. Very little 

sampling of the top surfaces of the steel electrodes occurred. 

No significant improvement in this objectionable behavior was 

evident as the pressure and supporting atmosphere (about 400 

to 760 Torr helium, argon, helium and air mixture, and argon 

and air mixture) were varied. Kaiser and Wallraff (53) 

observed similar phenomena with Iron, copper, platinum, and 

silver. This difficulty was corrected by incorporating 

filings prepared from massive samples into graphite sup­

porting briquettes which could then be sparked successfully. 
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2. Two sample pellets or a counterelectrode and a sample 

pellet 

In high-voltage spark excitation, the Individual sparks 

are passed either between a counterelectrode and the sample 

or between two sample electrodes. Because cathodlc sputter­

ing of samples occurs during both half cycles, it Is expected 

that greater Il/Ibg would be observed when both electrodes 

were composed of the sample mixture. The Improvement In 

Il/Ibg achieved with the above arrangement became apparent 

early In this study. A typical set of results Is given In 

Table 6. All subsequent experiments were performed with two 

Sample electrodes. 

Table 6. Use of sample electrode and counterelectrode or 
two sample electrodes 

^^Llne^^Background^ 

Line Two sample Counterelectrode and 
(^) electrodes sample electrode 

Br II 4704.86 2.3 .84 

Br II 4705.50 1.8 .65 

CI II 4794.54 3.0 1.2 

CI II 4819.46 1.0 .56 

I II 5161.19 1.1 .54 

S II 5453.81 .78 .48 

^Experimental conditions; 0.0037 M-f, SP 10, SPV 70, 
1.5 mm analytical gap, helium at 690 Torr. 
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3. Analytical gap 

The line to background behavior of several lines of the 

halogens and sulfur as a function of^gap separation is illus­

trated in Figure ?• The improvement in II /Ibg with decreas­

ing analytical gap separation was expected and this confirmed 

the earlier observations of Pizalkowski ̂  al, (28,29). Since 

the breakdown voltage of the analytical gap remains constant 

as the analytical gap width is decreased, it follows that the 

energy dissipated (iCV )per spark train will remain the same. 

Thus, both the energy and the sample vapor concentration per 

unit volume are expected to increase with decreasing gap 

separation. Consequently, the sample vapor should be more 

efficiently excited in smaller gaps. However, analytical gaps 

smaller than 1,5 mm showed a surprising drop in overall spec­

tral intensity. Part of this intensity decrease can be 

attributed to vignetting or shadowing of the emitted radia­

tion by the electrodes. However, this purely geometrical 

consideration cannot totally account for the observed spectral 

changes. In addition to the overall intensity decrease, the 

more energetic lines, for instance the lines of Sn II, He I, 

and the ion lines of the halogens, were depressed to a greater 

extent than lines originating from lower excited states. 

Branching of spark streamers (65) has been known to 

occur under condition of high overvoltage (voltage in excess 

of the amount required to break down the gap). Thus, branch-
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ing should occur to a greater extent for small gaps. One of 

the consequences of such branching should be a decrease In the 

current density of the Individual branches when compared to 

the current density of the usual single streamer per break­

down. Because high current densities are Important in popu­

lating the excited states of the halogens and sulfur (see 

chapter IV), branching of spark streamers may account for the 

experimental observations. The plausibility of this hypothe­

sis was explored in the following manner; highly-polished, 

silver pellets were sparked for 4 seconds across 1 and 2 mm 

gap separations, A far greater number of sputtering pits, 

indicating a correspondingly greater number of streamers, were 

observed in the pellets sparked across a 1 mm gap separation 

than in the pellets sparked across a 2 mm gap separation. 

3. Mature and Pressure of the Supporting Atmosphere 

The composite sample vaporization and excitation mechan­

ism is Influenced by the nature and pressure of the supporting 

atmosphere, as seen from the discussion presented In Section 

III-B-2. In review, the vaporization efficiency is expected 

to be greater as the number of Ions of the supporting atmos­

phere increase (at increasing pressures) and as the energy 

acquired by the ions Increases (at decreasing pressures). 

Also, at low pressures the electrons possess higher energies 

and have a greater probability of populating high-energy 
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excited states. 

With reference to the selection of a noble gas support­

ing atmosphere, argon Ions should be better sputtering Ions 

than helium because of their greater mass. However, an earlier 

discussion (Section III-B-1) of energy distributions in argon 

or helium spark plasmas indicated that the latter should be a 

more desirable supporting atmosphere. 

Finally, a previous discussion (Section III-B-2) has 

demonstrated that the pressure and nature of the supporting 

atmosphere affect the continuous background emitted during the 

course of the spark discharge. 

It is thus apparent that there are many possible permuta­

tions of the nature and pressure of the supporting atmosphere. 

In order to reduce the number of these experiments to a 

manageable magnitude, neon, krypton, and xenon were not 

studied because they were considered too expensive for prac­

tical qualitative analyses. 

In the discussion that follows, some of the most signifi­

cant observations made during these experiments are summarized, 

1. Pressure variation in a helium atmosphere 

The effect of pressure variation in a helium atmosphere 

on Il/Ibg shown in Figure 8, It is seen that the 

are relatively constant between 260 and 760 Torr. The slight 

decrease in above 760 Torr was the consequence of an 

Increase In the background level, as shown in Figure 9. This 
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Increased background was not unexpected because with Increas­

ing pressure there are more Ions available to participate in 

processes (Section III-3-2) that result in the emission of 

background radiation. 

As the pressure was decreased below 260 Torr, the spark 

exhibited an increasing tendency to engulf the pellets and 

collets. This behavior is illustrated in Figure 10, It is 

apparent that at pressures of 130 and 170 Torr, portions of 

the spark discharge are, in fact, striking the collets. Thus 

at pressures below 260 Torr this excitation process was not 

considered, practical. 

From the foregoing discussion, it is apparent that pres­

sures in the range of 260 to 760 Torr not only provided the 

maximal Il/Ibg but also produced well behaved spark dis­

charges. Because the pressure of 400 Torr showed a slight 

but definite superiority not only in but also in the 

absolute level of the background, this operating pressure was 

selected for further study. 

The effect of changing excitation parameters on the 

the halogens at the constant pressure of 400 Torr 

in helium is illustrated in Figure 11. It is seen that maxi­

mal I^/Ibg are obtained when both resistance and inductance 

are at residual or low settings. This is expected if it is 

remembered that as the values of R and L decrease, a higher 

peak current and a more energetic spark are obtained (Chapter 
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P = 760 torr P = 400 torr 

P = 300 torr P = 170 torr 

P= 130 torr 

Figure 10, Spark discharge at different pressures 
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A decrease In capacitance, as seen In runs 3 and 4 at 

constant primary voltage, had little effect on the Ii/Ibq. 

This is in concurrence with the idea that a change in C has 

a correspondingly small effect on the resulting current den­

sity. Also, because an increase in C results in an increase 

in the time required for the condensers to charge to a given 

voltage level, fewer discharges per half-cycle were expected. 

This, in fact, was observed as indicated in runs 3 and 4 of 

Figure 11. 

A maximum amount of spark power (SP 10) and a high value 

of spark primary voltage are important for high I^/Ibg (see 

runs 1 and 2 in Figure 11). An increase In the SP and SPV 

causes the condensers to be charged at a faster rate which 

results in more discharges per half-cycle and consequently 

more sampling of the electrodes. Although a minimum SPV of 

70 was necessary (Figure 12), a further increase in the SPV 

did not substantially change the until they decreased 

slightly at the maximum SPV, A disadvantage of employing 

maximum spark primary voltage was that the audio noise level 

of the spark became Increasingly annoying to the operator and 

his fellow workers. 

The electrical parameters 0.0037 M-f# 25 M-h, SP 10, and 

SPV 70 were selected as optimal. However, it is apparent from 

Figure 11 that parameter combinations 3» 4, and 5 also pro-
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vlded maximal thus any of these combinations would 

be a logical selection. However, this excitation technique 

must also provide good powers of detection for all the other 

elements. Because most metallic elements have low-lying 

excited states» It Is therefore desirable to select the com­

bination that corresponds to the less energetic spark. Thus, 

of the three preceding possibilities the one with the added 

inductance and least capacitance was selected. 

2. Pressure variation In an argon atmosphere 

Figure 13 Illustrates that for an argon atmosphere the 

the halogen lines reached a maximal value at a pres­

sure of 75 Torr and then decreased with a further Increase In 

pressure. This was expected because In an argon atmosphere, 

the probability for the effective excitation of the halogen 

lines would be greatest at low pressures (Section III-B-2). 

As illustrated In Figure 14, the background radiation in­

creased rapidly with Increasing pressure and was so Intense 

at pressures of 400 Torr and greater that difficulty was 

encountered In measuring It was obvious triat the 

background radiation was more Intense and became significant 

at lower pressures In argon compared to helium. Several other 

lnvesti%ators have reported heavy background emission In arc 

discharges in ar«on atmospheres (72,112). These observations 

are consistent with theoretical predictions. The efficiency 

of ionization by electrons Is much higher and occurs at much 
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lower energies in argon than in helium (66) and therefore, the 

absolute number of Ions and consequently, the amount of back­

ground radiation should be greater for an argon atmosphere. 

Also the Intensity of background radiation due to free-free 

transitions and recombination processes is greater for heavier 

elements (34). 

The results of experiments similar to those performed for 

helium (and illustrated in Figure 11) showed that at 75 Torr 

in argon, capacitances in the range 0.005 to 0.01 M-f, residual 

resistance, 50 nh, SP 10, and SPV 70 provided maximal Il/Ibg 

for the sensitive halogen lines. However, the P I 6856 A line 

was either very faint or not detectable at the 0.6# concentra­

tion level. This fact in Itself renders an argon atmosphere 

not acceptable for this purpose. 

3. Comparison of Il/Ibg ratios In helium and argon at 

selected optimal pressures.electrical parameters 

The high energy lines of the halogens were more effec­

tively excited In helium than in argon as demonstrated by the 

data summarized In Table 7. The most sensitive fluorine atom 

line was. In fact, not detectable In the argon atmosphere. 

This is really not too surprising because 14.4 eV are required 

to excite this line. Because the lowest excited state In 

argon is at 11 eV and the Ionization potential is 15.8 eV, 

the relative number of electrons with sufficient energy to 

excite the fluorine line should be far less than for the 
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helium atmosphere. For the latter atmosphere, the lowest 

excited state and the ionization potential are at 19.8 and 

24.6 eV. 

Table ?, Comparison of helium and argon atmospheres 

^Llne^^Background 
Line (A) 

He® at 400 Torr Ar^ at 75 Torr 

Br II 4704.86 6.1 3.1 

Br II 4785.50 4.3 1.8 

CI II 4794.54 6.1 3.0 

I II 5161.19 1.7 1.2 

S II 5453.81 1.5 0.97 

F I 6856.02 1.3 not seen 

^Electrical settings; 0.0037 nf, 25 ̂ ^h, SP 10, SPV 70. 

^Electrical settings; 0.005 , 50 t^h, SP 10, SPV 70. 

C. Effect of Various Matrix Materials 

In all the experiments described previously, stannic 

oxide was used as a supporting matrix for the halogens and 

sulfur impurities in the sample pellet. It is appropriate to 

note why this matrix was chosen. Such a matrix should have a 

simple emission spectrum, be nonhygroscoplc, and be easily 

obtained In a fairly pure form. Stannic oxide satisfies 

these requirements but any other material meeting these 
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criteria should be just as satisfactory. 

During the performance of experiments designed to aid in 

the selection of an appropriate matrix, several important 

observations were made which had a bearing on this selection 

as well as on the ultimate practical application of this 

excitation technique. 

The physical behavior of the discharge varied when dif­

ferent matrix materials, mixed with graphite, were sparked in 

helium at 400 Torr with instrument parameters of 0,0037 M-f, 

25 M-h, SP 10, and SPV 70. Zinc oxide, stannic oxide, lead 

dioxide, and cadmium oxide were among the several oxide 

matrices which gave excellent snarking behavior. 

However, during the excitation of blends of the alkaline 

earth oxides or thorium dioxide with graphite, the spark dis­

charge exhibited an objectionable tendency of occasionally 

striking the sides of the pellets. In the case of thorium 

dioxide, the discharge completely engulfed the pellets and 

even part of the collets. The cause of this spreading dis­

charge is not known, but it might be explained in part by the 

thermal emission of electrons from these materials. It is 

well known that the alkaline earth oxides are used to coat 

the cathodes in electron tubes when high electron emission 

at low temperatures is desired. It is therefore possible that 

when the sample becomes warm, electron emission may occur. 

This would account for the expansion of the discharge. This 
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behavior is a serious limitation to the practical utilization 

of these excitation conditions because the spectrum of collet 

materials may also be recorded. In an effort to find a pos­

sible solution to this problem the matrix material was diluted 

to a greater extent with graphite. However, increased dilu­

tion of barium oxide or thorium dioxide, from 1:2 to 1:10 with 

graphite increased the amount of spark wander. This behavior 

with a higher proportion of graphite in the pellets was not 

surprising. The spark discharge tends to wander when pure 

graphite pellets are used (discussed in Section VII-A). Thus 

as barium oxide and thorium dioxide were diluted, the pellet 

became more like a pure graphite pellet and consequently there 

was still spark wander. However, for blends of barium oxide 

and graphite all stray sparking was eliminated by increasing 

the pressure to 760 Torr. Also, at this pressure, the dis­

charge no longer engulfed pellets containing a 1:2 blend of 

thorium dioxide and graphite. However after about one minute, 

the discharge occasionally sparked to the sides of these 

pellets. 

Excitation at ?6o Torr should have little effect on the 

powers of detection for the halogens because pressures of 260 

to 760 Torr in helium yielded approximately equivalent Ix,/Ibg 

(Section VI-B-1). A pressure of 400 Torr had been originally 

selected because the were somewhat higher and the level 

of background was less. 
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D. Summary of the Optimal Excitation Variables for the 

Detection of the Halogens 

In several Instances equivalent the sensitive 

halogen lines were obtained for different combinations of 

excitation parameters. The variables that were chosen as the 

optimal experimental conditions for the detection of the halo­

gen lines are summarized in Table 8, The reasons for each 

selection have been presented in prior sections. 

Oscilloscope tracings illustrating a single spark train 

and also the number of such spark trains obtained In a given 

half-cycle, for these spark parameters, are seen in Figure 15. 
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Table 8. Optimal experimental conditions 

Source unit 

Source 

Capacitance 

Inductance 

Spark power 

Spark primary voltage 

RF current (rms) 

Voltage (rms) 

Electrode system 

Electrode material 

Analytical gap 

Atmosphere 

National Spectrographlc Labora­
tories, "Spec Power" Model KE-
4144 

High voltage spark 

0.0037 nf 

25 M-h 

10 

70 

—13 amps 

~20,500 volts 

2 sample pellets with flat tops, 
6.4 mm diameter 

High purity, pelleting graphite 
powder 

1.5 mm 

400 Torr He 
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a 
10 /Ltsec/cm 

b 
5 msec/cm 

Figure 15. Oscilloscopic tracings of the current waveform: 
(a) for a single spark train; and (b) illustrating 
the number of spark trains in a given half-cycle 
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VII. DETERMINATION OF THE SENSITIVE LINES AND A QUALITATIVE 

DETECTION LIMIT FOR MOST ELEMENTS 

Prior to the establishment of a practical qualitative 

analysis scheme using the previously determined excitation 

conditions. It was necessary to select the sensitive lines and 

determine the limits of detection of all the elements included 

in such a scheme. Only the synthetic and radioactive elements 

and noble gases were omitted from this study. 

Because of the nature of the excitation, more sample 

Ionization Is expected and consequently in many Instances, 

the Ion lines will be more sensitive than the atom lines of 

the analyte elements, 

A. Sample Preparation and Procedure 

Using the previously determined excitation conditions 

(Table 8), identification spectra for each element were pre-
o 

pared for the 2200-8800 A spectral region. The analyzed 

samples consisted of approximately one percent by weight of 

each element respectively. In graphite pellets. The photo­

graphic plates and filters used in the different wavelength 

regions are listed in Table 9. The more intense lines for 

each element were identified by utilization of the reciprocal 

linear dispersion of the Sbert Spectrograph and various wave­

length tables (37.7b,122). 
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Table 9, photographic emulsions and filters 

Wavelength 
region (A) 

Photographic 
emulsion Filter 

2200-4700 

4500-7000 

6600-6900 Eastman I-N 

Eastman III-O 

Eastman II-F Corning 0-52 

Corning 2-63 

None 

As the concentration of an element in a discharge column 

is decreased, the number of observable lines Is reduced until 

finally only the most sensitive lines, or rales ultimes, of 

the diluted element remain. In this manner the most sensitive 

lines of the various elements in a helium atmosphere were 

selected. In addition, a qualitative detection limit for 

these sensitive lines was determined in the following manner. 

A series of samples containing decreasing concentrations of an 

element In a given matrix, usually stannic dioxide, were pre­

pared by diluting the original sample with stannic dioxide and 

then diluting each successive sample. Each of these samples 

was then mixed in a ratio of one part sample to two parts 

graphite. The simplest, purest compounds available for each 

element were used. When the number, location, and Intensity 

of lines permitted, several elements were mixed together in a 

given series of samples. Table 10 gives the composition of 

the samples used for each element. Because of the impurities 
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Table 10. Composition of samples 

Element 
analyzed Sample* 

Ag AgCl, CuO, Fe203, and SIO2 in ZnO 

A1 AI2O3, Ga203, NHi^AuClfj,, and (NHZj,)2PdCl4, in 
Sn02 

As AS2O3, BI2O3, Se» and 8102 In Sn02 

Au AI2O3, 08203, NH^AuCl^, and (NH4)2PdCl/|. in 
Sn02 

B CdO, H3BO3, Hg(0211302)2» and ZnS in Sn02 

Ba BaC03, BeO, CaC03, MgO, and SrSO^ in Sn02 

Be BaC03, BeO, CaC03» MgO, and SrSOif, in Sn02 

B1 AS2O3, BI2O3, Se, and SIO2 in Sn02 

Br NaBr, NaCl, NaF, NaHS03, and Nal in Sn02 

Ca BaC03, BeO, CaC03, MgO, and SrSO^ in Sn02 

Cd CdO, H3BO3, Hg(0211302)2» and ZnS in Sn02 

Ce Ce02 in Sn02 

CI NaBr, NaCl, NaF, NaHS03, and Nal in Sn02 

Co C03O4, (NH4)2lrCl6# (NH4)20sCl5, KReOif, and 
(NH4)3RhCl6.li H2O in Sn02 

Cr Cr203, M0O3, Ta20^, and WO3 in Sn02 

Cs CS2PtCl6, KCl, LI2CO3. NaCl, and RbgPtCla in 
Sn02 

Cu AgCl, CuO, Pe203, Si02 in ZnO 

Dy Dy203 in Sn02 

*Each of these samples was then mixed in a ratio of one 
part sample to two parts graphite. 
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Table 10. (Continued) 

Element 
analyzed Sample® 

Er Er203 in Sn02 

Eu EU2O3, H02O3, and LU2O3 In Sn02 

F NaBr, NaCl, NaF, NaHS03, and Nal In Sn02 

Fe AgCl, CuO, Fe203, and Si02 in ZnO 

Ga AI2O3, 0*203, NH4AUCI4, and (NHZ|,)2PdCli|, In 
Sn02 

Gd Gd203 in Sn02 

Ge Ge02, In203, Sb203, and Te02 in Sn02 

H NH4H2PO4 in Sn02 

Hf Hf02 and Hg(C2H302)2 in Sn02 

Hg Hf02 and Hg(C2H302)2 in Sn02 

Ho EU2O3, H02O3, and LU2O3 in Sn02 

I NaBr, NaCl, NaF, NaHS03, and Nal in Sn02 

In AgCl, In203, Pb02 In MgO 

Ir [NHif]2lrCl6, [NH^JgOsCla, and (NHl^)2 
[au(H20)Clg] in Sn02 

K CS2PtCl6, KCl. LI2CO3, NaCl, and RbgPtCla 
in Sn02 

La LaP3 in Sn02 

Li Cs2PtCl6, KCl, LI2CO3, NaCl, and RbgPtCla 
in Sn02 

Lu EU2O3, H02O3, and LU2O3 in Sn02 

Mg BaC03, BeO, CaC03, MgO, and SrSO^ in Sn02 

Mn CuO, Fe203, Mn02. Ni, and Ru in Sn02 
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Table 10. (Continued) 

Element 
analyzed Sample* 

Mo CrgOg, M0O3, TagO^, emd WO^ In SnOg 

N (as CN) NH4H2PO4 in SnOg 

Na CsgPtClô. KCl, LI2CO3. NaCl, and RbgPtClô 
in Sn02 

Nb Hf02. Nb20^, TIO2, and Zr02 In Sn02 

Nd NdP-j In Sn02 

Ni CuO, Fe20^, Mn02, Ni, and Ru in Sn02 

0 Sn02 in Ag 

OS (NH4)2lrCl6,  (NH4)20sCl6,  and (NH^Jg 

[Ru(H20)Cl5] in Sn02 

P NH4H2PO4 in Sn02 

Pb CuO, Fe203, Pb02, and Si02 in SnOg 

Pd AI2O3, Ga203, NH4AUCI4, and (NH^igPdCl^ 
in Sn02 

Pr PrgOii in SnOg 

Pt Cs2PtCl6. KCl. Li2C03, NaCl, and RbgPtCla 
in Sn02 

Hb Cs2PtCl6, KCl, Li2C03. NaCl, and Hb2PtCl6 
in Sn02 

He C03O4, (NHi|.)2lrCl6, (NH/4.)20sCl6, KReOf*., and 

(NHi(,)3RhCl6«I^H20 in Sn02 

fth C03O4, (NHi^)2lrCl6, (NH4)20sCl6, KReO^, and 
(NH/4,)3RhCl5»I^H20 in Sn02 

Hu (NH4)2lrCl6, (N%)20sCl5, and (NH4)2 
[RufHaOjCl^] in Sn02 
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Table 10. (Continued) 

Element 
Analyzed Sample® 

S NaBr, NaCl, NaF, NaHSO^, and Nal in Sn02 

Sb StgOj and SnOg in MgO 

Se SC2O3, V2O5, and Y2O3 in-8n02 

Se A82O3, BI2O3, Se, and SlOg in Sn02 

31 AgCl, CuO, Fe203, and Si02 in ZnO 

Sm Sm203 in Sn02 

Sn Sn02 in Ag 

Sr BaCOg, BeO» CaCO^, MgO, and SrSOZj, in Sn02 

Ta Cr203, M0O3, Ta20^, and WO3 in Sn02 

Tb Tb^Oy in Sn02 

Te Ge02, In203, Sb203, and TeOg in Sn02 

Th Th02 in Sn02 

T1 Hf02# Nb20^, Ti02, and Zr02 in Sn02 

T1 TI2SO11 in Sn02 

Tm Tm203 in Sn02 

U UO2 in Sn02 

V SC2O3, V2O5, and Y2O3 in Sn02 

W WO3 in Sn02 

Y SC2O3, V20^, and Y2O3 in Sn02 

Yb Yb203 in Sn02 

Zn CdO, H3BO3, Hg(0211302)2» and ZnS in Sn02 

Zr Hf02, NbgO^, Ti02. and Zr02 in Sn02 
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in stannic dioxide, zinc oxide or magnesium oxide was used as 

a matrix material for silver, cooper, iron, indium, antimony, 

and silicon. Oxygen and tin were examined in a sample of 

stannic dioxide in a silver matrix. The prepared samples 

ranged in concentration from 0.2 to 0.0001% or lower depending 

on the specific element. 

Spectra for a given sample series were obtained for only 

the wavelength regions known (from the identification plates) 

to encommss the more intense lines of the element or elements 

being studied. The exposure period was about 3.5 minutes. 

The conditions utilized in exciting each element or group of 

elements are listed in Table 8. Because no background radia­

tion appeared on the I-N or on portions of the II-F plates, 

these plates were ore-exposed (15 to 30 seconds) to an incan­

descent lamp in order to obtain an 85 to 90 percent transmis­

sion reading for the background radiation. This pre-exposing 

was carried out to make sure that the Inertia of the photo­

graphic emulsion was exceeded thereby ensuring that the 

radiation from even the weakest line would be integrated by 

the emulsion. 

Even the purest graphite powder available has residual 

Impurities. Therefore, the spectrum of the most concentrated 

sample mixture was photographed in .juxtaposition to spectra 

of the graphite and of the matrix material blended with the 

graphite. This was done both to facilitate the location of 
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the lines of the analyte element and to determine the presence 

of any contamination or interferences from the matrix material 

or graphite. However, when pure graphite pellets were excited 

at pressures below atmospheric, the discharge tended to wander 

to the sides of the pellets. This problem was eliminated by 

sparking graphite pellets at atmospheric pressure, 

3, Results 

Table 11 lists the sensitive lines and corresponding 

estimated detection limits for 77 elements and gives avail­

able coir.narison data from various d.c, arc qualitative anal­

ysis schemes. The relative intensities of the sensitive lines 

resulting from excitation by a copper arc in air (76) were 

also Included in Table 11 for comparison purposes. More 

sample ionization occurs under the high-energy spark excita­

tion conditions used in this study than In a conventional d.c. 

arc discharge. The reader can convince himself of this fact 

by noticing that in several cases a lower detection limit is 

obtained for the ionized line of a given atom than for the 

neutral atom lines. With spark excitation, the strongest 

lines of about 20 elements corresponded to spectra of a higher 

decree of ionization than was reported by Meggers (76) for a 

d.c. arc. Several elements including cerium, chlorine, lan­

thanum, lutetlum, phosphorus, sulfur, and thorium, number 

doubly-ionized lines among their most sensitive lines. This 
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Table 11. Most sensitive lines and detection limits in a helium atmosphere 

Element & 
ionization 
potential 
(eV) 

Sensitive 
lines 

(A)* 

Excitation 
potential 
' (eV)t 

Estimated 
detection 
limit 
(<)C 

Inten­
sity 
NBSa 

Estimated detection limits 

Ahrens deVilliers Addink 
et al. 

7^6 
3382.89 I 
3280.68 I 
2413.18 II 
2437.79 II 

3.7 
3.8 

10.2 
9.9 

0.00009® 
0.0002 
0.0005 
0.0005% 

2800 
5500 
10 
8 

0.00005 0.0001 0.0001 

^Wavelengths and Intensity ratings were taken from NBS Monograph 32-Part I 
(76). If the line was not listed in this source, the value quoted In the MIT Tables 
(37) Is given. Other wavelength sources are Indicated by appropriate footnotes, œ 

o 

^Energy level information was acquired from (in order of priority): Meggers 
et al. (76), Moore (84), or Zaldel et al. (122) unless indicated otherwise. 

of element in matrix, diluted 1:2 with graphite. 

^DoC. arc excitation in air (2). The question mark notation following several 
of Ahrens• detection limits were transcribed directly from his table, 

®20 A d.c. arc excitation in a 70% argon/30^ oxygen atmosphere (22). 

^10 A d.c. arc excitation in air (1). 

®A residual amount of the analyte element was present in the matrix material. 

^Slight interference from coincident or adjacent spectral line. 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated Inten­ Estimated detection limits 
Ionization lines potential detection sity 
potential (A)® (eV)t limit NBS® Ahrens deVilllers Addlnk 
(eV) 

(eV)t 
(*)G ^ et al. 

A1 ,3092.71 I 4.0 0.002 650 0.0002 0.0001 0.0002 
6.0 13092.84 I 4.0 

3944.03 I 3.1 0.006 450 

As 2860,44 I 6.6 O.OO6S 90 0.01 0.01 0.002 
9.8 2349.84 I 6.6 O.OO6S 85 

2959.70 0.009® 
2288.12 I 6.8 0.009 44 
2745.00 I 6.8 0.009 44 
3116.63 II 0.01 
5651.53 II 12.3 0.01 

Au 2675.95 I 4.6 0.003 340 0.001 0.001 -0.0005 
6.0 2427.95 I 5.1 0.004 200 

B 3451.41 II 12.6 0.0002 0.001 -0.0004 
8.3 2497.73 I 5.0 0.0006 480 

2496.78 I 5.0 0.0006 240 

Ba 4554.04 II 2.7 0.0002 6500 0.0005 0.0001 -0.0001 
5.2 4934.09 II 2.5 0.0005 2000 

6141.72 II 2.7 0.001 2000 
6496.90 II 2.5 0.002 1200 
4130.66 II 5.7 0.008 150 
5853.68 II 2.7 0.008 280 
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Table 11, (Continued) 

Element & Sensitive Excitation Estimated Inten­ Estimated detection limits 
Ionization lines potential detection sity 
potential (A)* (eV)b limit NBSa Ahrens deVilliers Addink 
(eV) 

(A)* 
(%)* et al. 

Be 3130.42 II 4.0 /O,0000088 480 0.001 0.0001 -0.0001 
9.3 3131.07 II 4.0 0.000008 320 

3321.34 I 6.4 0.001 100 
3321.09 I 6.4 0.001 60 
2348.61 I 5.3 0,002 300 
2650.78 I 7.4 0,002 140 

Bi 3067.72 I 4.0 0,003® 3600 0,002 0.0001 -0.0003 
7.3 2897.98 I 5.7 0.006 400 

0.0001 -0.0003 

3695.55 0,006 
2855.67 0,006 
2938.30 I 6.1 0.01 320 
2909.03 I 5.6 0.01 280 

Br 4704.86 II 14.3^ 0.02 _ 

11.8 3540.11 
14.3^ 

0,03 
3506.5I 

14.2J 
0.04 

4785.50 II 14.2J 0.05 
3517.41 0.05 
3562.4! 0.05 
3333.0l 

14.6^ 
0.08 

5182.36 II 14.6^ 0.08 

^Reference (69). 

^Excitation energies were calculated from data in References (61) and (83), 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential (A)^ (eV)^ limit 
(eV) ($)C 

Ca 3933.6? II 3.2 <0.00028 
6.1 3968.47 II 3.1 <0.00025 

4226.73 I 2.9 0.0003 
3179.33 II 7.0 0.0006 
3158.87 II 7.0 0.002 
3736.90 II 6.5 0.002 

Cd 2288.02 I 5.4 0.002 
9.0 2265.02 II 5.5 0.005 

3610.51 I 7.4 0.008 
2312.84 II 11.1 0.01 
3403.65 I 7.4 0.01 
3261.06 I 3.8 0.01 

Ce 3055.59 111% 0.006 
lst-5.6 4186.6 II 3.8 0.01 
2nd—10.8 4133.80 II V 3.9 0.01 

3147.06 III* 0.01 
3443.63 IIlJ 0.01 
3459.39 IIlJ 0.01 
3121.56 111% 0.01 
3057.23 111% 0.01 

^Reference (105). 

Inten- Estimated detection limits 
slty 
NBS® 

Ahrens deVilllers Addlnk 
et al. jg® 

4200 0.0002 0.0001 ~0.0001 
2200 
1100 

50 
20 
15 

1500 0.001 0.003 -0.001 00 
110 
360 
4 

80 
32 

250 
190 

0.05 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential /9)a (eV)^ limit 
(eV) (3)0 

CI 4794.54 II 15.9 0.02 
lst-13.0 4810.06 II 15.9 0.02 
2nd-23.8 4253.51 II 18.8 0.04 

4819.46 II 15.9 0,05 
3602.10 III 25.0 0.05 
8375.97 I 10.4 0.05 

Co 2388.92 II 5.6 0.0008 
7.9 2541.94 II 6.2 0.001 

2580.33 II 6.0 0.002 
3453.50 I 4.0 0.004 

Or 2677.16 II 6.2 0.0001 
6.8 3132.06 II 6.4 0.0002 

3124.94 II 6.4 0.0002 

Cs 8521.10 I 1.4 0.01 
3.9 4603.76 II 10.1 0.01 

5925.65 - 0.02 
4277.10 II - 0.02 
5227.00 II 10.1 0.02 

Cu 3247.54 I 3.8 0.003® 
7.7 3273.96 I 3.8 0.0048 

Inten­
sity 
NESa 

Estimated detection limits 

Ahrens deVilllers Addink 
et al. 

70 
8 
40 

1300 

200 

0.001 0.0003 0.0004 

0.0001 0.0001 -0.0002 

00 
-P 

1500 0.0002 

5000 0.00005 0.0001 0.00008 
2500 
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Table 11, (Continued) 

Element & Sensitive Excitation Estimated Inten­ Estimated detection limits 
ionization lines potential detection sity 
potential (%)* (eV)t limit NBS® Ahrens deVilliers Addink 
(eV) 

(%)* (eV)t 
(*)0 et al. 

Dy 3531.70 II 3.5 0.004 2000 0.001 
5.9 3645.41 II 3.5 0.007 1000 

4000.48 II 3.2 0.02 650 
3536.03 II 0.02 500 
3523.98 II 4.0 0.02 400 

Er 3692.64 II 3.4 0.01 700 0.001 M 

6.0 3372.76 II 3.7 0.02 750 
3499.11 II 3.6 0.02 650 
4007.97 I 0.05 1100 
3830.53 II 3.2 0.05 320 
3312.42 II 3.8 0.05 220 

Eu 4205.05 II 2.9 0.002 4000 0.001 
5.7 3819.67 II 3.2 0.002 3400 

3930.48 II 3.4 0.002 2800 
4129.70 II 3.0 0.002 2200 
3971.96 II 3.3 0.003 2000 
3724.94 II 3.3 0.003 1700 
4435.56 II 3.0 0.005 900 
3688.42 II 3.4 0.01 550 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential (eV)^ limit 
(eV) ($)o 

6856,02 I 14.4 0.09 
6239.64 I 14.6 0.09 
7754.70 I 14.5 0.1 
6902.46 I 14.5 0.1 
6348.50 I 14.6 0.1 
7037.45 I 14.7 0.1 
7398.68 I 14.3 0.1 
3505.61 II (28.5) 0.2 

2599.40 II 4.8 0.0018 
2611.87 II 4.8 0.0018 

2739.55 II 5.5 o.oois 
2585.88 II 4.8 0.0018 
2598.37 II 4.8 0.0018 
2382.04 II 5.2 0.0018 
2395.62 II 5.2 0.0018 
2749.32 II 5.5 0.0018 
2631.05 II 7.5 0.0018 
2613.82 II 4.8 0.0018 
3734.87 I 4.2 0.0018 
2617.62 II 4.8 0.001 
2628.29 II 4.8 0.001 
2727.54 II 5.6 0.001 

Inten­
sity 
NB3® 

Estimated detection limits 

Ahrens deVilllers Addink 
et al. 

200 0.0005 0.001 -0.0001 
80 
75 

II 
60 
60 
55 
32 

700 
32 
32 
18 
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Table 11, (Continued) 

Element & Sensitive Excitation Estimated Inten­ Estimated detection limits 
Ionization lines potential detection sity 
potential (2)* (eV)b limit NBSa Ahrens deVllllers Addlnk 
(eV) 

(2)* (eV)b 
(*)c et al. 

Ga 4172.06 I 3.1 0.002 2000 0.0003 - -0.0005 
6.0 4032.98 I 3.1 0.004 1000 

2943.64 I 4.3 0.004 950 
2874.24 I 4.3 0.008 500 

Gd 3422.47 II 3.9 0.003 700 0.02? 
6.2 3646.19 II 3.6 0.01 600 

3362.23 II 3.8 0.02 550 
3768.39 II 3.4 0.02 850 
3796,37 II 3.3 0.02 500 
3545.80 II 3.6 0.02 440 
3439.99 II 3.8 0.02 280 
3463.98 II 4.0 0.02 280 
3664.60 II 0.02 260 
3671.20 II 3.4 0.02 200 
3481.28 II 4.2 0.03 220 

Ge 2651.18 I 4.8 0.001 1200 0.0005 0.001 
7.9 2709.63 I 4.6 0.005 850 

0.0005 

2754.59 I 4.6 0.005 650 
2691.34 I 4.6 0.008 500 
2651.58 I 4.6 0.01 550 

H , 6562.82 I 12.0 0.48*1 
13.6 

6562.82 

blank of the analyte element was present In the spectrum of the supporting 
electrode material. 
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Table 11, (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential (eV)^ limit 
(eV) (*)C 

Hf 
7 

Hg 
10.4 

Ho 
6 .0  

3399.80 II 3.6 0.02 
3505.23 II 4.6 0.02 
3561.66 II 3.5 0.04 
2773.36 II 5.2 0.04 
3535.54 II 4.1 0.04 
2975.88 II 4.8 0.04 
3109.12 II 4.8 0.04 
2751.81 II 5.5 0.05 

2536.52 I 4.9 0.002' 
4358.35 I 7.7 0.004 
3650,15 I 8.8 0.004 
4046.56 I 7.7 0.01 
5460.74 I 7.7 0.02 
3125.66 I 8.8 0.02 
3131.55 I 8.8 0.02 
3131.83 I 8.8 0.02 

3456.00 II 0.003' 
3398.98 II 0.006 
3796.75 I 0.01 
3610.73 I 0.01 
3484.84 II 0.01 
3425.34 II 0.01 

Inten- Estimated detection limits 
sity 
NBa& Ahrens deVilllers Addink 

et al. 

260 0.01? - -0.02 
140 
150 
110 
110 
100 

80 
40 

1500 0.01 - -0.003 
400 
280 
180 
320 
40 
32 
32 

1800 0.001? 
900 
1000 
1000 

700 
200 
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Table 11. (Continued) 

Element & 
Ionization 
potential 
(eV) 

Sensitive 
lines 

(A)* 

Excitation 
potential 
(eV)t 

Estimated 
detection 
limit 
(2)0 

Inten­
sity 
NBSa 

Estimated detection limits 

Ahrens deVllllers Addlnk 
et al. 

I 3940.24 
18.3® 

0.02 
10.4 3055.37 II 18.3® 0.04 

3931.01 0.04 
3498.03 

13.9* 
0.05 

5336.19 II 13.9* 0.05 
5161.19 II 12.4m 0.08 
3481.83 0.09 
4220.96 II 0.09 
5464.62 II 12.3® 0.09 

In 4101.76 I 3.0 0.002 1700 0.0001 - -0.001 
5.8 3256.09 I 4.1 0.002 1300 

4511.31 I 3.0 0.003 1800 
3258.56 I 4.1 0.004 300 

Ir 3133.32 I 4.7 0.08 340 0,005 - -0.04 
9 2924.79 I 4.2 0.1 320 

3220.78 I 4.2 0.2 500 
3513.64 I 3.5 0.2 320 
2694,23 I 5.0 0.2 220 
2943.15 I 5.0 0.2 200 

"Reference (71). 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated Inten­ Estimated detection limits 
ionization lines potential detection sity 
potential (A)® (eV)b limit N3Sa Ahrens deVllllers Addink 
(eV) \ A / (eV)b 

(<)* et al. 

K 7664.91 I 1.6 0.001 1800 0.0002 0.03 0.3 
4.3 7698.98 I 1.6 0.001 900 

0.0002 0.03 

4186.23 II 23.1 0.01 
4044.14 I 3.1 0.02 32 

La 3171.68 III 5.8 0.002. 20 0.001 0,004 
l8t-5.6 3949.10 II 3.5 0.006* 900 
2nd-11.4 3517.14 III 5.2 0.006 10 

3794.78 II 3.5 0.01 460 
4123.23 II 3.3 0.01 440 
4086.72 II 0.02 550 

Li 6707.84 I 1.8 0.0008 3600 0.0001 0.004 
5.4 6103.64 I 3.9 0.001 320 

3232.61 I 3.8 0,005 17 
4602.86 I 4.5 0.01 13 
8126.52 I 3.4 0.02 48 

Lu 
1st—5 3554.43 II 5.6 0.002 280 0.001? « 

2nd-13.9 3397.07 II 5.1 0.002 240 2nd-13.9 
2603.33 III 5.5 0.002 38 
2772.58 III 5.5 0.002 26 
3057.90 III 4.8 0.002 9 
2615.42 II 4.7 0.002 1200 
3077.60 II 5.6 0.002 500 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
Ionization lines potential detection 
potential /9\a (eV)b limit 
(eV) (%)C 

, Lu 
(cont.) 

2911.39 mn 
3254.31 

II 
II 
II 
II 

6.0 

; 

0
0
0
0
 
0
0
0
0
 

0
0
0
 

0
 

Mg 
7.6 

2798.06 
2852.13 
2790.79 

II 
II 
II 
I 
II 

M 
8.9 
4.3 
8.9 

<0.00002® 
<0.00002s 
0.00002 
0.0001 
0.0002 

Mn 
7.4 

2576.10 
2949.20 
2605.69 
2939.30 
2933.06 
3441.99 
2593.73 

II 
II 
II 
II 
II 
II 
II 

4.8 

5.4 

1:: 
4.8 

0.0002 
0.0002 
0.001 
0.002^ 
0.002% 
0.002 
0.003 

Mo 
7.1 

2816.15 
2775.40 
2871.51 
2923.39 
3132.59 

II 
II 
II 
II 
I 

6.1 
6.1 
5.8 
5.8 
4.0 

0.001 
0.002 
0.002 
0.002 
0.002 

Inten- Estimated detection limits 
slty 
NBS& Ahrens deVllllers Addlnk 

et al. 

600 
480 
200 
280 

1000 0.0002 0.0001 0.00004 
600 
16 

6000 
13 

1200 0.001 0.001 -0.00015 
240 
550 
190 
140 
110 
800 

220 0.0005 0.001 -0.003 
220 
220 
160 
1800 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
Ionization lines potential detection 
potential (eV)^ limit 
(eV) (*)C 

Mo 2930.50 II 5.7 0.002 
(cont.) 2684.14 II 6.3 0.002 

3087.62 II 7.4 0.002 
3292.31 II 6.9 0.002 
3635.14 II 6.6 0.002 
3692.64 II 6.4 0.002 

(CN) bandheads 
3871.4 0.002 
3883.4 0.04 

Na 5895.92 I 2.1 0.0001® 
5.1 3302.32 I 3.8 0.008 

3302.99 I 3.8 0.008 
8194.81 I 3.6 0.01 
8183.27 I 3.6 0.02 

Nb 3130.79 II 4.4 0.006 
6,9 3659.61 II 5.3 0.009 

2950.88 II 4.7 0.01 
3163.40 II 4.3 0.01 
3194.98 II 4.2 0.01 
3094.18 II 4.5 0.02 

Inten- Estimated detection limits 
sity 
NBS® Ahrens deVllliers Addink 

et al. 

140 
110 
34 
24 
3.5 

20 

1000 0.00005 0.001 -0.0001 
30 
15 
220 
110 

180 0.003 - -0.01 
24 
170 
140 
120 
220 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential (9\a (eV)^ limit 
(eV) (<)C 

Nd 4012.25 II 3.7 0.04 
5.5 4061.09 II 3.5 0.05 

3863.40 II 3.2 0.05 
4109.46 II 3.3 0.08 
4156.08 II 3.2 0.09 

Nl 3524.54 I 3.5 0.006 
7.6 3414.76 I 3.6 0.008 

2394.52 II 6.8 0.008 
2416.14 II 7.0 0.008 
2316.04 II 6.4 0.008 
3461.65 I 3.6 0.008 
3002.49 I 4.2 0.008 

0 7771.93 I 10.7 0.4®»^ 
13.6 7774.14 I 10.7 0.4S,1 

7775.43 I 10.7 0.8S.1 

Os 3042.74 II 5.5 0.01 
8.7 3213.31 II 5.5 0.01" 

2255.85 II 5.5 0.05 
2336.80 II 5.7 0.05 
2580.03 II 6.4 0.05 
3301.56 I 3.8 0.05 

Inten- Estimated detection limits 
slty 
NBSa Ahrens deVllllers Addink 

et al. 

220 0*001 » " 
280 
220 
150 
180 

750 0.0005 0.0001 0.0002 
750 
12 
10 
7 

460 
320 

12 0.005 
16 
19 
17 
12 
800 
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Table 11» (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential (2^» (eV)^ limit 
(eV) (*)0 

p 2535.65 I 7.2 0.003 
lst-10.5 2553.28 I 7.2 0.01 
2nd-19»7 4222.15 III 17.5 0.01 

3233.61 III 21.3 0.01 
6043.05 II 12.8 0.02 
2554.93 I 7.2 0.04 
4059.2? III 17.5 0.04 . 0

0
 

0
0
 

III 17.4 0.04 

Pb 3683.48 I 4.3 0.001 
7.4 4057.83 I 4.4 0.002 

3639.58 I 4.4 0.002 
2833.06 I 4.4 0,003 
2801.99 I 5.7 0.004 

Pd 3404.58 I 4.4 0.002 
8.3 3634.70 I 4.2 0.003 

3421.24 I 4.6 0.003 
2488.92 II 8.1 0.004 
3516.94 I 4.5 0.004 
3553.08 I 4.9 0.004 
3481.15 I 4.8 0.004 

Inten- Estimated detection limits 
sity 
NBS& Ahrens deVllllers Addlnk 

et al. 

60 0,01? - 0.002 
38 

15 

o 
1400 0.0005 0.001 -0.0003 
3400 
550 
950 
1000 

2600 0.001 
2200 
1400 

8 
1300 
1300 
1100 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
Ionization lines potential detection 
potential (eV)^ limit 
(eV) (2)0 

Pr 4100.75 II 3.6 0.01 
5.4 4143.14 II 3.4 0.01 

4008,71 II 3.7 0.01^ 
3816.17 II <0.02* 
4179.42 II 3.2 0.02 
4222.98 II 3.0 0.02 
4225.33 II 2.9 0.02 
4189.52 II 3.3 0.02 
2980.52 0.02 
3367.53 0.02 

Pt 3064.71 I 4.0 0.003 
9.0 2702.40 I 4.7 0.02 

2733.96 I 4.6 0.02 
2997.97 I 4.2 0.02 
2774.78 II 0.02 
2794.21 II 6.1 0.02 
2929.79 I 4.2 0.02 
2719.04 I 4.7 0.02 
3042.64 I 4.2 0.02 

Rb 7800.23 I 1.6 0.005 
4.2 4244.44 II 0.02 

Inten- Estimated detection limits 
slty 
WBS® Ahrens deVllliers Addlnk 

et al. %f 

260 0.001 
240 
170 
140 
460 
340 
340 
220 

320 0.005 - -0.0008 
200 
180 
180 

1.6 
170 
130 

80 

3000 0.0001 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential f9\a (eV)b limit 
(eV) (%)0 

He 3460,46 I 3.6 0.009 
7.9 2733.04 II 6.7 0,01 

3464,73 I 3.6 0.02 
3580.15 II 5.6 0.02 
2461.84 II 0.02 
2502.35 II 7.6 0.02 

Rh 2490.77 II 7.1 0.003 
7.5 3434,89 I 3.6 0.005 

3692.36 I 3.4 0,006 
3502,52 I 3.5 0,006 
2415.84 II 7.6 0,009 
2520.53 II 7.0 0.01 
2461.04 II 7.3 0.01 
2910.17 II 7.4 0,01 
3528.02 I 3.7 0,01 

Ru 2678.76 II 5.8 0,002 
7.4 2456.57 II 6.3 0.003 

2692.06 II 5.9 0,006 
2734.35 II 5.8 0.006 
2976.59 II 6,6 0.006 

S 3497.34 III 0.05 
lst-10.4 4142.29 II 18.8 0.05 
2nd.23.4 4145.10 II 18.8 0.05 2nd.23.4 

4162.70 II 18.8 0.05 

Inten- Estimated detection limits 
sity 
N3S& Ahrens deVilliers Addink 

et al. 

5500 
55 

4000 
80 

0.01 

8 
700 
800 
500 
4 
10 
7 
5 

750 

75 
40 
36 
34 
15 

0.001 

0.001 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential /?\a (eV)b limit 
(eV) (*)C 

S 
(cont.) 5453.81 II 15.9 0.08 

3632.02 III* 21.1 0.09 
3717.78 III* 21.5 0.09 

Sb 2598.05 I 5.8 0.006 
8.6 3267.51 I 5.8 0.01 

3504.47 I 5.8 0.01 
2669.64 0.02 
3232.52 I 6.1 0.02 

Sc 3613.84 II 3.4 0.0002 
l8t-6.5 3630.75 II 3.4 0.0002 
2nd-12.8 4246.83 II 3.2 0.0005 

3642.79 II 3.4 0.0005 
2699.11 III 7.8 0.001 
3645.31 II 3.4 0.001 
3651.80 II 3.4 0.001 
4314.09 II 3.5 0.002 
3368.95 II 3.7 0.002 

"Reference (84). 

Inten- Estimated detection limits 
sity 
NBSa Ahrens deVllllers Addlnk 

et al. 

600 0.002 0.01 0.002 
85 

100 

2500 0.0002 
1800 
1400 
1200 

600 
480 
380 
360 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
Ionization lines potential detection 
potential /?)a (eV)^ limit 
(eV) (3)0 

Se 35440 0.009 
9.8 3738.7° 0.009 

3387.2° 0.01 
3637.5* 0.01% 
5227.51 0.03 
3711.60 0.04 

SI 2881.60 I 5.1 0.0028 
8.2 2524.11 I 4.9 O.OO6S 

2528.51 I 4.9 0.0068 
3905.53 I 5.1 0.008 

8m 3592.60 II 3.6 <0.053 
5.6 3568.27 II 4.0 0.02 

3634.29 II 3.6 0.02 
3885.29 II 3.7 0.05 
4424.34 II 3.3 0.05 
3661,36 II 3.4 0.05 
3670.84 II 3.5 0.05 
3306.39 II 4.2 0.06 

^Reference (122). 

Inten- Estimated detection limits 
slty 
NBS® Ahrens deVllllers Addlnk 

et al. 

260 0.002 0.003 0.0002 
240 
200 
11 

350 0.05? 
350 
280 
280 
200 
180 
180 
140 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential (%)&. (eV)^ limit 
(eV) (*)0 

Sn 2839.99 I 4.8 0.002 
7.3 2863.33 I 4.3 0.002 

3034.12 I 4.3 0.006 
3009.14 I 4.3 0.008 
3262.34 I 4.9 0.02 
3801.02 I 4.3 0.02 

ST 4077.71 II 3.0 <0.0001 
5.7 4215.52 II 2.9 0.0003 

3464.46 II 6.6 0.002 
3380.77 II 6.6 0.005 
4607.33 I 2.7 0.007 
4305.45 II 5.9 0.008 

Ta 2685.17 II 5.1 0.01^ 
7.9 2635.58 II 4.8 0.01 

2400.63 II 5.9 0.02 
2675.90 II 5.2 0.02 
2603.49 II 5.5 0.02 

Tb 3509.17 II 0.003 
(5.8) 3561.74 II 0.006 

3702.85 II 0.01 
3676.35 II 0.01 
3650.40 II 0.01 
3703.92 II 0.01 
3523.66 II 0.01 
3293.07 II 0.02 

Inten­
sity 
NBS® 

Estimated detection limits 

Ahrens deVilllers 

et al. 

Addink 

1400 
1000 

850 
700 
550 
280 

4600 
3200 

^5 
650 
34 

180 
140 
140 
90 
70 

600 
340 
460 
380 
240 
240 
140 
160 

0.001 0.001 0.001 

0.0005 

0.01? 

0.001 

0.0001 0.02 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential (9)a. (eV)^ limit 
(eV) (*)G 

Tb 3874.19 II 0.02 
(cont,) 3568.51 II 0.02 

3324.40 II 0.02 
3848.76 II 0.02 
3899.20 II 0.02 
3658.88 II 0.02 
3568.51 II 0.02 
2891.41 II 0.02 
3682.26 II 0.02 
3939.52 II 0.02 

Te 2385.76 IIP 0.02 
9.0 2858.29 IIP 0.02 

3251.37 

M
 

M
 0.02 

2383.25 M
 

M
 

0.03 
3277.50 0.06 
3278.77 0.06 
5708.12 IlP 0.06 

Th 2978.72 111% 0.01 
1st-? 3221.29 II . 0.01 
2nd-? 3216.63 111% 0.02 

3291.74 II 4.5 0.04 
3301.26 II 0,04 

Paeference (36). 

^Reference (123), 

Inten- Estimated detection limits 
sity 
NBS& Ahrens deVilliers Addink 

et al. 

320 
kkO 
400 
340 
220 
200 
170 

80 
75 

0.02 

0.01 0.01 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
Ionization lines potential detection 
potential (9\a limit 
(eV) IGV, (*)c 

Th 3131.07 II 4.0 0.04 
(cont.) 3377.48 III* 0.05^ 

3232.04 Ilia 0.05 
3148.06 III® 0.05 
3097.96 III® 0.05 
2899.72 II 5.0 0.05 

T1 3349.41 II 3.7 0.0008 
6.8 3234.52 II 3.9 0.0008 

3341.88 II 4.3 0.0008 
3078.64 II 4.0 0.0008 
3372.80 II 3.7 0.001 
3383.76 II 3.7 0.001 
3239.04 II 3.8 0.001 
3088.02 II 4.1 0.001 
3759.30 II 3.9 0.001 
3685.20 II 4.0 0.001 
3322.94 II 3.9 0.002 
3761.32 II 3.9 0.002 
3241.99 II 3.8 0.002 
3075.22 II 4.0 0.002 
3066.22 II 4.0 0.U02 
3252.91 II 3.8 0.002 

Inten- Estimated detection limits 
slty 
NBS® Ahrens deVilllers Addlnk 

et al. 

11 

22 

1000 0.001 0.0003 -0.001 
550 
480 
190 
480 
480 
340 
300 
280 
260 
240 
240 
220 
130 
110 
100 
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Table 11, (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential (AÎ® (eV)^ limit 
(eV) t ' (%)0 

T1 3519.24 I 4.5 0.0006 
6.1 3091.66 II 0.004 

5350.46 I 3.3 0.008^ 
3775.72 I 3.3 0.008" 
3529.43 I 4.5 0.008 
2767.87 I 4.5 0.008 
3229.75 I 4.8 0.008 

Tm 3462.20 II 3.6 0.002 
6.2 3425.08 II 3.6 0.002 

3848.02 II 3.2 0.003 
3131.26 II 4.0 0.003 
3761.33 II 3.3 0.005 
3453.67 II 3.6 0.005 
3761.91 II 3.3 0.005 

U 3670.07 II 3.5 0.05 
~4 4090.14 II 3.2 0.05 

2651.84 0.05 
3037.91 0.05 
3985.80 II 3.8 0.08 
4241.67 II 3.5 0.08 
3013.83 0.08 

Inten- Estimated detection limits 
slty 
NBS® Ahrens deVllllers Addink 

et al. 

2000 0.0001 - 0.007 

1800 
1200 

500 
400 
120 

800 0.001? - o 
600 
750 
700 
500 
460 
400 

160 0.01 0.03 
160 

tSÎ 

85 
75 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated 
ionization lines potential detection 
potential (9^® (eV)^ limit 
(eV) (*)* 

V 3093.11 II 4.4 0.0002 
6.7 3102.30 II 4.4 0.0002 

3110.71 II 4.3 0.0002 
2924.02 II 4.6 0.0005 
3118.38 II 4.3 0.002 
2924.64 II 4.6 0.002 
3125.28 II 4.3 0.002 
2687.96 II 4.6 0.002 
3271.12 II 4.9 0.002 

W 2397.09 II 5.6 0.02 
8.0 2702.11 II 6.2 0.02 

4008.75 I 3.4 0.05 
2764.27 II 4.5 0.05 
2697.71 II 4.8 0.05 
2579.54 II 5.7 0.05 
2722,81 II 6.4 0,05 
3077.52 II 0.05 

Y 3710.30 II 3.5 0.0005® 
lst-6.4 3774.33 II 3.4 0.0005s 
2nd-12.2 3600.73 II 3.6 0.0008 

3633.12 II 3.4 0.0008 
4374.94 II 3.2 0.001 
3788.70 II 3.4 0.001 
3601.92 II 3.5 0.001 
2414.68 III 5.1 0.002 
3611.05 II 3.6 0.002 

Inten- Estimated detection limits 
sity 
N3S® Ahrens deVllllers Addink 

et al. P' 

500 0.0005 0.001 -0.002 
400 
340 
320 
260 
220 
200 
140 
120 

34 0.002 
20 

950 
50 
26 
20 
20 
14 

1500 0.001 
1200 
1300 
1000 
1200 

850 
800 
16 

1000 
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Table 11. (Continued) 

Element & Sensitive Excitation Estimated Inten- Estimated detection limits 
ionization lines potential detection slty 
potential (eV)^ limit NBS& Ahrens deVllllers Addlnk 
(8V) (<l° al. *= it 

Y 4177.54 II 3.4 0.002 800 
(cont,) 3327.89 II 4,1 0,002 600 

3195.62 II 4.0 0.002 300 
2945,94 III 5.1 0,002 32 

Yb 3694.19 II 3.4 <0.004h 3200 0,001 « « 

6.2 3289.37 II 3.8 0.003 2600 
3987.98 I 3.1 0.006 1900 
2891.38 II 4.3 0.006 500 
2970.56 II ^ 4.2 0.008 280 
2818.72 III? 0.01 

Zn 3345.02 I 7.8 0.005^ 140 0.01 0.003 -0,003 
9.4 2502.00 II 11.0 0.005 

3302.59 I 7.8 0,005 90 
2557.96 II 11.0 0.01 
4810,53 I 6.6 0.02 140 
4722.16 I 6,6 0.02 100 
2770.98 I 8,5 0.02 6 
6362.35 I 7.7 0,02 12 

3r 3438.22 II 3.7 0.002 750 0.001 0.001 
6,8 3496.21 II 3.6 0.002 6 SO 

3556.60 II 4.0 0.006 340 
3481.15 II 4,4 0.006 200 
3479.39 II 4.3 0,006 190 
3273.05 II 4.0 0.006 160 
3430.53 II 4.1 0,009 160 
3698.17 II 4.4 0,009 120 

^Reference (17). 
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greater degree of Ionization is both an advantage and a dis­

advantage. The more energetic source permits the excitation 

of the sensitive ion lines of the halogens that are located in 

the visible wavelength region. However, the other elements 

are also ionized and in general the principal spectral lines 

of ionized atoms have shorter wavelengths than the Intense 

lines of neutral atoms. Consequently, the most sensitive 

lines of some of the ionized atoms may be located at wave-
o 

lengths less than 2200 A. 

In most cases, the reported estimated detection limit was 

the lowest concentration In which the sensitive lines were 

visually detected. However, when the matrix material or 

graphite supporting material was contaminated with a residual 

amount of the analyte element, the reported detection limit 

was the lowest concentration at which there was a noticeable 

change In the intensity of the line. These detection limits 

correspond to the concentration, ^ by weight, of analyte 

element in the matrix material. The uncertainty in these 

reported values is estimated to be 50^. The detection limits 

of the other investigators listed in Table 11 are based on 

total Sample composition. Consequently, the detection limits 

reported in this study would be lowered to 1/3 of the stated 

values if the concentration were expressed in terms of the 

total capped pellet composition. One should keep these facts 

in mind when comparing the detection limits listed in Table 
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11. Comparison with the arc methods indicates that spark 

excitation provides detection limits that are equivalent or 

better for 51 of 68 elements and in addition permits the 

detection of hydrogen, nitrogen, oxygen, sulfur, selenium, 

fluorine, chlorine, bromine, and iodine. 

As a group, the alkaline earth ions have exceptionally 

low detection limits. Unfortunately, because of a large 

amount of residual calcium in the matrix material, it was not 

possible to report an actual detection limit. In their singly 

ionized form, these elements have only one s electron in the 

unfilled shells and this configuration has a relatively low 

stability. As a result, the energy of the first excited state 

is relatively low and therefore easily excited. Usually, 

the transition probabilities for the s?^p transitions in ions 

with the alkali metal configuration, are generally high. 

Meggers (74) states that the most Intense line of a spectrum, 

the rale ultime, "originates with a simple interchange of a 

single electron between s and p states, usually preferring 

configurations in which only one electron occurs in such 

states". Consequently, the ion lines of these elements should 

be easily excited and quite intense. 

Similar considerations help to explain the poor detect-

ability of aluminum, gallium, indium, and thallium. The ionic 

configurations of these elements consist of a filled s sub-

shell which is quite stable. Consequently, the excited states 
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are very high in energy and the strongest ionic lines lie in 

the far ultraviolet (75). Thus, for the detection of these 

elements, it is necessary to utilize lines emitted from the 

less populated (under these excitation conditions) energy 

levels of the neutral atom. Consequently, the intensity of 

these lines are correspondingly lowered. 

The detection limits of the alkali metals are also rela­

tively poor. The singly ionized form of these elements possess 

the very stable p^ (noble gas) configuration. As a conse­

quence, the most sensitive ion lines of these elements are 

located below 2200 A, Thus, as in the previous case, the less 

sensitive (under these excitation conditions) atom lines must 

be used. 

Because of the difficulty in obtaining a matrix material 

free of copper, iron, silicon, hydrogen, and oxygen, the 

actual detection limits of these elements are undoubtedly 

significantly lower than the estimated values. A blank of 

oxygen and hydrogen was also found in the spectrum of pure 

graphite pellets. The source of this contamination may arise 

from several sources including the adsorption of water vapor 

on the graphite powder, the adsorption of oxygen on the sur­

faces of the excitation chamber, or contamination In the 

helium supply. Successive sparking (or arcing between two 

sparking periods) of the graphite pellets removed the majority 

of the hydrogen blank but had little effect on the intensity 
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of the oxygen lines. This Indicates that most of the hydrogen 

blank is from the graphite and not from the helium. 

When silver pellets containing various concentrations of 

carbon in a stannic oxide matrix were excited, the intensity 

of the carbon lines in the resulting spectra remained essen­

tially constant even though the carbon concentration changed. 

It was possible to differentiate between 3 and 0.8% carbon, 

but not between lower concentrations. The spectrum of pure 

silver pellets indicated the presence of a high carbon blank 

in the silver powder. Because of the preceding difficulties 

and because this was the only element that could not be anal­

yzed in graphite pellets, the investigation of carbon was 

discontinued, 

C, Practical Considerations 

One disadvantage of the arcing or sparking of graphite 

electrodes in an air atmosphere is the resulting formation of 
o 

cyanogen bands which obscure the 36OO to 4200 A spectral 

region. This interference was eliminated by replacing air 

(N2) with helium. However, if the unknown sample contains 

nitrogen and is in a graphite electrode, cyanogen bands will 

again form. This is, indeed, a very sensitive way to detect 

nitrogen, however, major amounts of nitrogen will also inter­

fere with the identification of some of the other elements. 

Another difficulty encountered Involves the sparking of 
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pellets containing hydrated salts. Pellets of samples contain­

ing absorbed or combined water may be shattered at the Initial 

spark contact because of the sudden vaporization of the water. 

This problem Is often encountered in arc and spark excitation. 

To avoid this difficulty the recommended procedure is to heat 

the sample before the analysis in order to drive off any 

absorbed water or water of crystallization. However, such a 

procedure is unsatisfactory if the detection of water of 

hydration is of interest. In addition, prior heating may 

result in the loss of some other volatile constituents. If 

sufficient sample Is available, two analyses are advisable, 

one with and one without prior heating. 
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VIII. SUGGESTIONS FOR FUTURE INVESTIGATIONS 

An obvious extension of this method would be the prepara­

tion of a "master spectrum". This composite spectrum should 

be composed of a few of the most prominent lines of each 

element. Such a "master spectrum" would simplify the Identi­

fication of unknowns. Because of the complexity of the 

spectra of the rare earths and some of the transition ele­

ments, It would probably be desirable to prepare several 

"master spectra". 

Since low detection limits for the halogens have been 

obtained from hollow cathode excitation, explorations on the 

application of this excitation source to a qualitative anal­

ysis method are also of interest. 
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IX. SUMMARY 

A spectrograph!c qualitative analysis scheme which in 

principle allows the detection of all elements except helium 

in a sample was developed. This scheme Is based on the exci­

tation of the sample in conducting briquettes by a high-

voltage spark in a helium atmosphere. Under these excitation 

conditions the detection limits for the halogens and sulfur 

are in the range of 0.02 to 0.09#. The elements oxygen and 

hydrogen can be estimated down to 0.4#, while nitrogen can be 

detected down to 0.002%. The detection limits for the alka­

line earth elements range from less than 0.000008 to 0.0002# 

and for the alkali metals from 0,001 to 0.01#. With the 

exception of hafnium, tungsten, iridium, tellurium, uranium, 

neodymlum, and samarium the remaining elements had detection 

limits of 0.01# or less. Thus, this qualitative analysis 

scheme encompasses, for the first time, the detection of the 

halogens, sulfur, selenium, oxygen, nitrogen, and hydrogen 

along with all of the metallic elements. 
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